

Grant Number	20632
Project Title	'A UAV Communications Platform for Mines Rescue Operations'
Researcher	University of Canberra
Institute/Address	University of Canberra, Canberra ACT 2601
Contract Officer	Dr Kumudu Munasinghe
Project Liaison Officer	Lynne Magee
Deliverable	Final Report
Prepared by	Mr Matthew Collingridge
	Mr Adrian Garrido Sanchis
	Dr Braden McGrath
	Dr Kumudu Munasinghe

Table of Contents

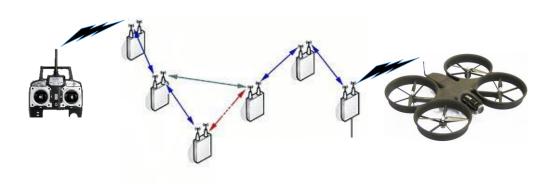
Executive Summary
1. Introduction
2. Technology Review
2.4 GHz 802.11 Wi Fi5
900 MHz band5
3. Prototype UAV Communications System7
Mesh node design
Routing Algorithm Design
UAV configuration9
4. Prototyping Testing and Demonstration
In-House
Mesh testing
Drone control testing
Voice over IP (VoIP)13
SRMS Woonona14
The first network test14
The second network test15
Task 5: Intrinsically Safe Configuration Design

Executive Summary

Coal Services Pty Ltd (CSPL) Health and Safety Trust, under Project No. 20632 - UAV Communications, tasked the University of Canberra (UC) to validate that no currently commercially available technology meets the size, weight, performance, and cost required for a capable communications platform to operate a compact UAV underground. In addition, if no commercially available device is available, to develop a Software Designed Radio (SDR)¹ system as a proof-of-concept communications platform for operating an Unmanned Aerial Vehicle (UAV) in the coalmine environment.

The UAV communications system will be based on an advanced, battery-based, ad-hoc, wireless communication system. The proposed architecture will be an on-the-fly deployable network design that does not rely on any pre existing infrastructure. The UAV (developed by Areal Photography Specialists in Adelaide) will carry additional nodes and when network signal strength degrades – the UAV will deploy a communication node to extend the network. If necessary, the UAV will return to base to pickup additional nodes to further extend the network. This feature necessitates that the communication nodes are lightweight and small, such that the UAV can carry multiple nodes.

Benefits of our Solution:


- Ease and speed of deployment
- On-the-fly configuration (self-configuring)
- No dependence on infrastructure
- High bandwidth (video transmission capability)
- No interference with other equipment in mines
- Greater range and robustness than traditional below ground communications
- Capable of interworking with the existing heterogeneous network

¹ Software-defined radio (SDR) is a radio communication system where are implemented in an FPGA (e.g. mixers, filters, amplifiers, modulators/demodulators, detectors, etc.) are implemented in hardware though a hardware description language (<u>http://en.wikipedia.org/wiki/Software-defined_radio</u>)

1. Introduction

The UAV communications system will be based on an advanced, battery-based, ad-hoc, wireless communication system. The proposed architecture will be an on-the-fly deployable network design that does not rely on any pre existing infrastructure.

The UAV will carry additional nodes and when network signal strength degrades – the UAV will deploy a communication node to extend the network. If necessary, the UAV will return to base to pickup additional nodes to further extend the network. This feature necessitates that the communication nodes are lightweight and small, such that the UAV can carry multiple nodes.

As illustrated above, each node participates in routing by forwarding data from other nodes. The operation of the proposed system will allow transmission of video data. In addition, we will use COFDM (Coded Orthogonal Frequency Divisional Multiplexed) wireless technology to allow communication signals to travel underground and through small (<5m) obstructions. The main reason for our decision to use COFDM is its ability to overcome multipath effects. When a signal is transmitted, it is met with obstructions such as tunnel corners, equipment, cave-ins, and even people, which scatter the signal causing it to take two or more paths to reach its final destination. The late arrival of the scattered portions of the signal can cause ghost images of the video. COFDM is resistant to multipath effects because it uses multiple carriers to transmit the same signal. Instead of the signal scattering when met with an obstacle, it flows around the obstacle like a river flows around a rock.

In addition to routing, ad hoc networks use flooding for forwarding data, which makes the network high resilient. The proposed wireless networking platform will be heterogeneous and be able to selfconfigure and interwork with existing wireless networks. With appropriate mesh routing protocols, a highly robust networking solution for underground mines, tunnels, and other confined space environments will be achieved. The communication system will be a secure, robust, resilient, wireless link, capable of transporting data, video, audio, sensor and tracking information from below ground to the surface. A communication network will be formed using COFDM IP nodes, which could run the length of the main mine shaft and also strategically placed at the entrance to the lateral tunnels, and will providing connectivity for the UAV from the mine head to above or below ground remote monitoring stations.

Benefits of the Solution:

- Ease and speed of deployment
- On-the-fly configuration (self-configuring)
- No dependence on infrastructure
- High bandwidth (video transmission capability)
- No interference with other equipment in mines
- Greater range and robustness than traditional below ground communications
- Capable of interworking with the existing heterogeneous network

Intrinsic safety (IS) is a protection technique for safe operation of electrical equipment in hazardous areas by limiting the energy available for ignition. In communication circuits that can operate with low currents and voltages, the IS approach simplifies circuits and reduces installation cost over other protection methods.

2. Technology Review

Regarding the requirement for a readily deployable communication system for use in the underground space, there are only two technologies at present that are able to be used for the wireless transmission of data in the communications space, both based on standard wireless protocols, which are:

Open 900 MHz band and, 2.4 802.11 Wi Fi system.

There are currently a number of approved systems (for use in coal mines and other explosive risk atmospheres) commercially available in Australia. All other systems for communications utilise either leaky feeder or copper / fibre connections, which are not wireless or readily transportable.

While all wireless systems suffer from loss of signal over distance, they also suffer from loss of bandwidth (size of the data transfer "pipe) over distance. This reduces the ability to send large packets of data between one node and the next, as the distances between the nodes increases.

2.4 GHz 802.11 Wi Fi

- Tried and tested system with multiple deployments and pieces of equipment that may be interfaced. (phones, cameras, tablets etc)
- Works well in line of site, does not like to "go around corners" and is seriously impacted by obstructions and infrastructure. (belt structure, seals and restrictions in the roadway)
- Relatively power hungry, requires typically 40+ VA, so ability to use small battery pack is not possible.
- Bandwidth drops off relatively quickly (depends on mine parameters and obstructions), reducing the ability to use say live camera and data streaming, though ability to use voice comms is possible over longer ranges.
- Approved systems for use underground, but not battery powered.
- Able to use for tracking, but accuracy low (typically 100m).

900 MHz band.

• This is an open band (in Australia, + 918 MHz), which has allowed for a number of devices being developed for use in this range, though the number of cameras etc. is not that extensive at the 2.4 GHz band.

- Good for line of site and far more able to go around corners and less impacted by infrastructure than the 2.4 GHz band. In a straight line, has approximately 1/2 the range of 2.4 GHz.
- For relatively simple data transmission (Text and small data packages) the system is able to be battery powered (typically AA, or D cells). Overall not large bandwidth system.
- Bandwidth does not drop off as quickly, allowing for easier deployment in the underground space.
- Approved battery powered systems for use underground.
- Able to be used for tracking, but accuracy typically to 10m.

Using the MSRA approved electronics list, Internet search, and industry contacts; the following table of commercially available communications platforms that potentially could be used to operate a compact UAV underground was developed. Please note, that only Commercial-Off-the Shelf (COTS) battery-operated systems are presented. Powered systems were excluded.

Company	Name	Battery	Mesh	Size	Weight	Freq	IS
Strata	CommTrac	12	Yes	300 mm	1.9kg	900Mhz	Yes
Worldwide		months		150 mm			
				60 mm			
Rajant	Breadcrumb	3 Hours	Yes	189 mm	1.2kg	900MHz	No
	ME4			95 mm		2.4GHz, 5	
				51 mm		GHz	
Northern	Netport-	24 hours	Yes	295 mm	6kg	2.4GHz, 5	Yes
Light	able is node			339 mm		GHz	
Technologie				152 mm			
S							
NewTrax	NTX-WN-	12	Yes	120 mm	2.5kg	900MHz	No
	300	months		120 mm			
				90 mm			
American	MN-6400	240	Yes	356 mm	30.8kg	2.4 GHz	Yes
Mine	Nodes	hours		356 mm			
Research				178 mm			
IWT	Sentinal	~200	Yes	~350 mm	~30kg	2.4 GHz	Yes
		hours		350 mm			
				180 mm			
Active	AM2000	30 hours	Yes	250mm	~12Kg	2.4GHz	Yes
Control	FaceNode			250mm			
Technology				290mm			

Two technologies were technically very promising; Rajant Breadcrumb ME4 and the NewTrax NTX-WN-300. However, they are not IS compliant and engagement with the companies highlighted that IS was not on their roadmap for the next 12 months. Northern Light Technologies, American Mine

Research, Active Control Technology, and IWT are all good products and certified IS, but are too big and heavy for UAV control.

The only system approved for use in the Australian underground space is the CommTrac system from Strata, which has over 230 systems deployed in mines worldwide. (Each system typically has +50 nodes and +400 tracking and communication devices).

The Strata CommTrac is a truly wireless, battery powered mesh communications and tracking system for underground mining. It is compliant to provide two-way communications and location tracking in day-to-day as well as post-accident situations. Strata CommTrac is intrinsically safe and MSHA approved. However, CommTrac is designed for fixed location data transmission and currently does not have the bandwidth available for video transmission.

Based on this market research, UC established a professional relationship with Strata and a Confidential Disclosure Agreement (CDA) was executed by the parties. A face-face- meeting in Brisbane occurred and in summary:

- Strata is interested in working with UC on this project especially in the area of IS
- The size, weight and throughout of the CommTrac are all a function of the battery life requirement. Smaller systems are technically possibly.
- UC will leverage the Software Designed Radio (SDR) system currently under development at UC for the Mine Rescuer health monitoring system project and working with Strata will upgrade the SDR to be a self-configuring, deployable communications platform to allow UAV communications from above ground directly to mining face. The SDR radio will be able to control the UAV, stream thermal and normal video, and transmit gas sensor data from the UAV back to the surface. The nodes will be small enough to be carried and deployed by the UAV and will provide at least 3 hours of battery life.

3. Prototype UAV Communications System

Mesh node design

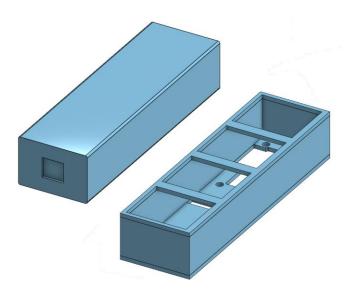
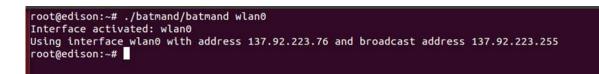

We have developed a fully functional mesh router to support the operations of a UAV within the mine. This mesh router uses 10 Intel Edison SoM as it is the main processor module used in the heterogeneous device design.

Figure 1 - Intel Edison and LiPo battery

The Intel Edison has been modified to run on a customised version of the poky Linux environment unique to our system. Recent developments such as the custom operating system has allowed for link aggregation and multiple transceivers, Increasing Bandwidth and reliability of the network, whilst allowing for a more stable connection. These recent improvements have solved the UAV video issues experienced in the test site.



Routing Algorithm Design

A self-configuring energy efficient routing algorithm for the mesh communication system has been developed for each node. The mesh network was setup initially with the batman-adv mesh routing protocol, however but with time constraints and several problems that were encountered with testing the mesh. The alternative chosen was the batman routing demon. This provides many of the same features as batman-adv but operates at layer 3 of the TCP IP stack. This protocol worked fully with all the existing network test tools and allowed the mesh to be built on top of an existing IBSS ad-hoc network connection.

Figure 3 - Batman routing demon protocol.

Batmand has provided for the fast routing and self-healing features needed for future work with the mesh. Each of the Edison devices were configured to create a full mesh, with a standard laptop providing the initial DHCP settings for the network.

Figure 4 - Example launch script for mesh nodes.

UAV configuration

Once the mesh had been setup and initial testing was completed a UAV was configured for use on the Mesh. This involved configuring an Edison to relay drone commands over the mesh. Once the Edison was configured it was installed into a UAV and connected to the drone's flight control board. The autopilot was then configured to accept the Edison as an off board control interface. With this completed the Edison redirects controls sent as UDP packets via the mesh directly to the flight control board.

Figure 5 - UDP controls visualised in Qground control

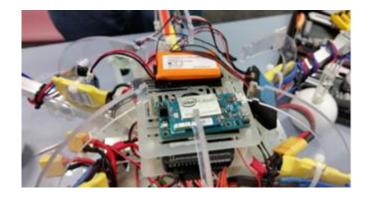


Figure 6 - Our Test mesh and UAV, running on an Intel Edison

Once the ground control station is connected to the mesh, control devices such as joysticks to be used to control the drone. In addition the drone can be set into full autopilot mode and made to navigate to waypoints or by GPS.

Figure 7 - Ubuntu laptop with Qground control's auto flight planer and live webcam and sensor feed

The flight controller is connected to the Edison using a serial connection to telemetry 2 port. The settings for port and destination on the Edison are set at this point. With this done via the PX4, it will automatically offload some of its lower priority tasks onto the Edison. The Edison is also able to function as a redundant flight processor for the PX4.

Figure 8 - 3DR PixHawk flight control board

4. Prototyping Testing and Demonstration

In-House

Mesh testing

To test the mesh, each node was powered from a single 3.7 volt 2000 mAH lithium polymer ion cell. This allowed the node to run for several hours of a single charge.

The nodes where arranged in line of sight or near line of sight to the adjacent nodes in the mesh, normally at a corner or similar junction point, throughout a four (4) story university building to deliberately create the need to multiple hops.

This system allowed us to ensure each node could connect to the one before and after it in the planned path. This also meant that nodes would have difficulty if a single node was removed from the network during the test. Additional routes where sometimes created during testing to see if signals would find the most optimized path.

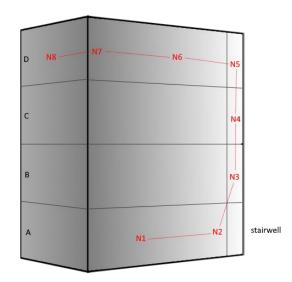


Figure 9 - Diagram of the testing building used at UC

Once this was done the ping utility, tracepath and mtr were was used to measure the delay hops and latencies between them. A total of 8 hops was created and tested. During the test individual nodes where disconnected and the mesh was forced to rebuild without that node.

😣 🖱 🗊 root@csip-Latitud	e-3540: /hor	me/csip/b	atmand			
root@edison:~/batmand#	arp					
root@edison:~/batmand#						
Address		HWadd	ress	Flags	Mask	Iface
10.42.1.21	ether	78:4b	:87:a5:88:9a			wlan0
10.42.1.1	ether	34:23	:87:20:ed:11	С		wlan0
root@edison:~/batmand#	ping 10.4	12.1.31				Charles and Charles
PING 10.42.1.31 (10.42	.1.31): 50	6 data	bytes			
64 bytes from 10.42.1.	31: seq=0	ttl=62	time=40.889	ms		
64 bytes from 10.42.1.	31: seq=1	ttl=62	time=49.069	ms		
64 bytes from 10.42.1.	31: seq=2	ttl=62	time=27.523	ms		
64 bytes from 10.42.1.	31: seq=3	ttl=62	time=36.085	ms		
64 bytes from 10.42.1.	31: seq=5	ttl=62	time=37.417	ms		
64 bytes from 10.42.1.	31: seq=6	ttl=62	time=31.999	ms		
64 bytes from 10.42.1.	31: seq=7	ttl=62	time=36.931	ms		
^C						
10.42.1.31 ping st	atistics -					
8 packets transmitted,	7 packets	s recei	ved, 12% pac	ket loss		
round-trip min/avg/max	= 27.523	/37.130	/49.069 ms			
root@edison:~/batmand#	tracerout	te 10.4	2.1.31			
traceroute to 10.42.1.	31 (10.42.	.1.31),	30 hops max	, 38 byt	e packets	
1 10.42.1.21 (10.42.	1.21) 2.4	167 ms	2.690 ms 2	.691 ms		
2 10.42.1.38 (10.42.						
3 10.42.1.31 (10.42.					ms	
root@edison:~/batmand#						

Initial test results show that the mesh is able heal itself when a node or multiple nodes are removed in most cases. Nodes can be moved within an active mesh provided they remain in range of stationary nodes that are a currently connected. Mobile nodes sometimes require higher originator intervals in the mesh setup software to allow for higher mobility. The ideal candidate for this is the UAV deployed on the mesh. During testing it was found the mesh averaged 37.13 milliseconds roundtrip time for a four hop section.

The mesh also averaged 53.794 milliseconds over 8 hops round trip time. This is length of time is insignificant in drone control especially considering drone control messages are single direction only. The mesh test results show that at this stage of development the mesh is capable of self-healing and

of reasonably high speed communications. The mesh is capable of finding new paths and will often skip nodes that are redundant or unnecessary to communications due to two being in range of each other.

Drone control testing

Initial drone testing was done with the drone being in the same room as the QGC computer. This was done to check that the drone was capable of receiving commands over a single hop connection. Once the drone was shown as being able to receive commands over the mesh via a single hop, the controller for the drone was calibrated and configured to allow for simple flight. The drone was walked around and held during a large part of the test to evaluate mobility on the mesh due to safety.

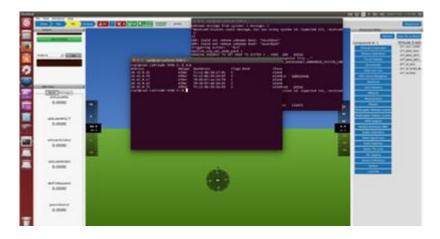


Figure 11 – Qground control interface and an apr table containing node addresses

During this testing it was shown that the drone can be fully controlled over the mesh. Even over multiple hops the drone is able to receive command and telemetry with little latency gain.

Voice over IP (VoIP)

After hearing feedback from Steve Tonegato and Robert Bull during our second site test, it was decided that a VOIP system operating over our Network would be of great benefit. This has been tested over multi hop and direct scenarios with both Voice and video data and has been proven possible using freely available software, in our case we used RING. There has been some stability issues with this however as there is no SIP server and the call is on an IP2IP basis, this means if the network changes or IP address change the call is dropped.

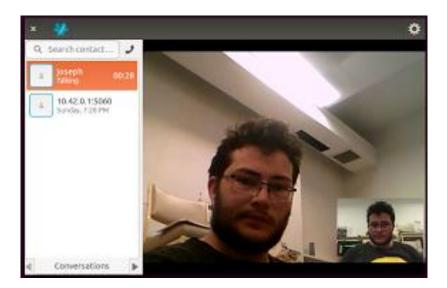


Figure 12 - VOIP Call over single hop mesh network.

SRMS Woonona

After multiple tests both in-house and at the Woonona test site we have seen that the UAV is capable of flight, communication of control and sensor data and HD Video over the mesh network.

The first network test

The first network test and demonstration was carried out at the SMRS Wonoona on the 9th of November with Mr Steve Tonegato from CSPL in attendance. The wireless mesh network and the capabilities of the drone for transferring telemetry, control, video and sensory data was successfully demonstrated above ground. During the above ground tests latency over the mesh over multiple hops was checked and reported to be in millisecond range. However, due to a software issue, the network did not properly mesh in the underground gallery.

Figure 13 - Setting up for a demo at SMRS Woonona

Figure 14 - surface UAV demo at SMRS Woonona

The second network test

The second network test and demonstration was carried out at the SMRS Wonoona on the 20th of November with Mr Steve Tonegato from CSPL present. The wireless mesh network was successfully tested and demonstrated underground. However, due to bandwidth limitation of the mesh network underground, the capabilities of the drone for transferring telemetry, video and sensory data was only limited to a single hop on the mesh. The team agreed to increase the bandwidth of the mesh network and carry on further tests in 2016.

🔘 🗇 🕞 cspl@cspl2-Latitude-3540:	🧕 🗇 💿 cspl@cspl2-Latitude-3540: ~
64 bytes from 10.42.0.90: [cmp_seq=139 tll=63 tlme=6.13 ns 64 bytes from 10.42.0.90: [cmp_seq=190 tll=63 tlme=7.93 ns 64 bytes from 10.42.0.90: [cmp_seq=191 tll=63 tlme=7.2. ns 64 bytes from 10.42.0.90: [cmp_seq=193 tll=63 tlme=7.5.2 ns 64 bytes from 10.42.0.90: [cmp_seq=193 tll=63 tlme=7.6.8 ns 64 bytes from 10.42.0.90: [cmp_seq=193 tll=63 tlme=7.6.8 ns 64 bytes from 10.42.0.90: [cmp_seq=195 tll=63 tlme=7.6.8 ns 64 bytes from 10.42.0.90: [cmp_seq=195 tll=63 tlme=7.6.8 ns 64 bytes from 10.42.0.90: [cmp_seq=195 tll=63 tlme=3.1.8 ns 64 bytes from 10.42.0.90: [cmp_seq=195 tll=63 tlme=3.1.8 ns 64 bytes from 10.42.0.90: [cmp_seq=197 tll=63 tlme=3.4.8 ns 64 bytes from 10.42.0.90: [cmp_seq=198 tll=63 tlme=9.45 ns 64 bytes from 10.42.0.90: [cmp_seq=208 tll=63 tlme=7.9.8 ns 64 bytes from 10.42.0.90: [cmp_seq=208 tll=62 tlme=7.3.7 ns 64 bytes from 10.42.0.90: [cmp_seq=208 tll=62 tlme=7.2.5 ns 64 bytes from 10.42.0.90: [cmp_seq=208 tll=62 tlme=7.2.5 ns 64 bytes from 10.42.0.90: [cmp_seq=208 tll=62 tlme=7.2.8 ns 64 bytes from 10.42.0.90: [cmp_seq=208 tll=63 tlme=7.9 ns 64 bytes from 10.42.0.90: [cmp_seq=201 tll=63 tlme=7.4 ns 64 bytes from 10.42.0.90: [cmp_seq=201 tll=63 tlme=7.9 ns 64 bytes from 10.42.0.90: [cmp_seq=201 tll=63 tlme=7.4 ns 64 bytes from 10.42.0.90: [cmp_seq=201 tll=63 tlme=7.4 ns 64 bytes from 10.42.0.90: [cmp_seq=201 tll=63 tlme=7.4 ns 64 bytes from 10.42.0.90: [cmp_seq=211 tl	cspl@cspl2-latitude-3540:-5 traceroute 10.42.0.90 The program 'traceroute' can be found in the following packages: * inetuitis-traceroute * traceroute Try: sudo apt-get install <selected package=""> cspl@cspl2-latitude-3540:-5 tracepath 10.42.0.90 17: [LoCALHOST] pmtu 1500 11: 10.42.0.21 19.202ms 11: 10.42.0.30 21.334ms 21: 10.42.0.90 21.334ms 21: 10.42.0.90 15.211ms reached Resume: pmtu 1500 hops 3 back 2 cspl@cspl2-Latitude-3540:-5</selected>

Figure 15 - Multiple hops with path and ping stream to UAV, tested at SMRS Woonona

🔘 🗐 🕕 cspl@cspl2-Latitude-3540: –	🧐 🗇 💿 cspl@cspl2-Latitude-3540: ~			
64 bytes from 10.42.0.90: icmp_seq=206 ttl=62 time=7.66 ms	cspl@cspl2-Latitude-3540:~\$ traceroute 10.42.0.90			
64 bytes from 10.42.0.90: lcmp_seq=207 ttl=62 tlme=21.3 ms	The program 'traceroute' can be found in the following packages:			
64 bytes from 10.42.0.90: icmp_seq=208 ttl=63 time=17.9 ms	* inetutils-traceroute			
64 bytes from 10.42.0.90: icmp_seq=209 ttl=63 time=34.2 ms	* traceroute			
64 bytes from 10.42.0.90: icmp seg=210 ttl=63 time=48.9 ms	Try: sudo apt-get install <selected package=""></selected>			
64 bytes from 10.42.0.90: icmp seg=211 ttl=63 time=30.4 ms	cspl@cspl2-Latitude-3540:-\$ tracepath 10.42.0.90			
From 10.42.0.90 icmp seg=224 Destination Host Unreachable	17: [LOCALHOST]	pmtu 1500		
From 10.42.0.90 icmp_seg=225 Destination Host Unreachable	1: 10.42.0.21	19.202ms		
From 10.42.0.90 icmp seg=226 Destination Host Unreachable	1: 10.42.0.21	2.334ms		
64 bytes from 10.42.0.90: icmp seg=232 ttl=61 time=73.7 ms	2: 10.42.0.38	21.838ms asymm 1		
64 bytes from 10.42.0.90: icmp seg=233 ttl=61 time=41.2 ms	3: 10.42.0.90	15.211ms reached		
64 bytes from 10.42.0.90: icmp_seq=234 ttl=61 time=41.6 ms	Resume: pmtu 1500 hops 3 back 2			
64 bytes from 10.42.0.90: lcmp_seq=235 ttl=61 time=59.9 ms	cspl@cspl2-Latitude-3540:~\$ tracepath 10.42.0.90			
64 bytes from 10.42.0.90: lcmp_seq=236 ttl=60 time=64.6 ms	1?: [LOCALHOST]	patu 1500		
64 bytes from 10.42.0.90: icmp seq=237 ttl=60 time=80.2 ms	1: 10.42.0.21	7.027ms		
64 bytes from 10.42.0.90: icmp seq=238 ttl=61 time=103 ms	1: 10.42.0.21	2.310ms		
64 bytes from 10.42.0.90: icmp_seq=239 ttl=61 time=31.7 ms	2: 10.42.0.38	20.576ms asymm 1		
64 bytes from 10.42.0.90: icmp seg=240 ttl=61 time=32.1 ms	3: 10,42.0,46	18.463ms asymm 2		
64 bytes from 10.42.0.90: icmp seq=241 ttl=61 time=59.0 ms	4: 10.42.0.34	13.813ms asymm 3		
64 bytes from 10.42.0.90: icmp_seq=242 ttl=61 time=99.3 ms	5: 10.42.0.90	21.917ms reached		
64 bytes from 10.42.0.90: icmp_seq=243 ttl=60 time=44.1 ms	Resume: pmtu 1500 hops 5 back 4	ETTST/HS Teached		
64 bytes from 10.42.0.90: icmp_seq=244 ttl=60 time=19.5 ms	cspl@cspl2-Latitude-3540:~\$			
64 bytes from 10.42.0.90: icmp_seq=244 ttt=00 ttme=19.5 Ms	capt@captercoder3540.~5			
24 bytes 1104 10.42.0.90. temp_sed#245 ttt=00 tthe=59.2 Hs				

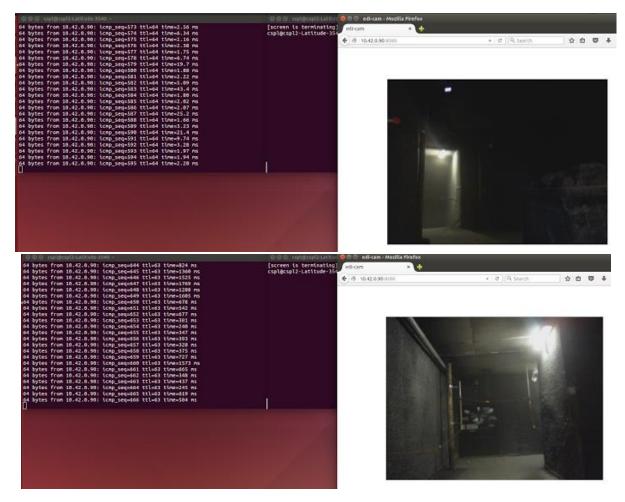


Figure 17 - Video streams tested under the previous system at Woonona

Task 5: Intrinsically Safe Configuration Design

Our heterogeneous wireless mesh device has been designed to be intrinsically safe for an underground mining environment in collaboration with Strata and the Mine Safety Testing Centre (MSTC). Currently our device has not been IS certified

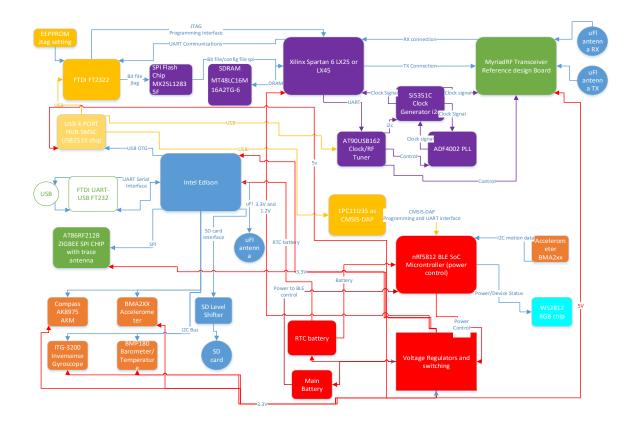


Figure 18 - Intrinsically safe configuration design. Overview and block diagram