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Executive Summary 

Background and Objectives of the Project 

Pneumoconiosis is caused by long-term inhalation of respirable dust, such as coal, asbestos, and 
silica, and that from the inhalation of coal dust is more commonly known as black lung. It is 
characterized by declining lung function and has no cure. In Queensland, Australia, about 105 
cases of mine dust lung diseases have been diagnosed since 1984 [1]. In 2017, the first case was 
identified in an NSW coal mine and broke the non-occurrence record that the state had been 
justifiably proud of since 1970s [2]. One case is too many. It is reported that pneumoconiosis kills 
about 6,000 coal workers in China each year [3]; and in the US, more than 10% of examined 
underground coal miners with 25 or more years of experience were diagnosed with 
pneumoconiosis [4]. Pneumoconiosis caused 69,377 deaths during 1970-2004 [5], and about 
21,600 people died of pneumoconiosis globally in 2017 alone [6]. A report shows that poor dust 
control is to blame for the re-emergence of pneumoconiosis in Queensland, and patchy medical 
screening has failed in the early detection of this potentially fatal disease [7]. A 2018 study by the 
National Institute of Occupational Safety and Health (NIOSH) also shows a resurgence of this 
disease in the US [4]. 
 
For pneumoconiosis screening, chest X-ray images (radiographs) are acceptable, widely available 
and relatively inexpensive. The main manifestation of pneumoconiosis is the presence of small, 
regular and irregular, opacities in the lung parenchyma. In the International Labour Organization 
(ILO) Classification System, small opacities are categorised according to their shape (round or 
irregular) and size (ranging from <1.5 to >10 mm). The ILO Classification System requires a B-
reader to compare chest X-rays to reference standards to provide a score on a 12-point grading 
scale [10].  
 
There is no national approach to health screening of coal miners in Australia. In NSW, a chest X-ray 
is normally recommended every 6 years for mine site workers but is not mandatory. X-rays are 
read by radiologists who are familiar with the ILO classification but may not be certified B-readers. 
The current practice in Queensland is considered the most stringent of health screening programs 
across the country, after undergoing significant reform since 2016. In Queensland, coal miners 
considered at risk of dust exposure are required to undergo pre-employment chest X-rays, 
followed by routine X-ray screenings after the employment, and each X-ray requires two B-readers 
to review. However, the insensitivity of chest radiographs for the detection of early or moderate 
pneumoconiosis limits their efficacy in screening [8]. This also leads to low sensitivity and 
specificity of chest X-rays when read by a radiologist who is qualified as a B-reader, especially for 
the detection of pneumoconiosis at an early stage of the disease. Inter- and intra-reader variability 
in chest radiography has been acknowledged ever since chest radiography was first used to 
identify and classify pneumoconiosis. Another limiting factor in screening programs is that there 
are only 71 doctors from outside the US who are currently certified to the B-reader standard to 
identify pneumoconiosis in chest radiographs [9]. This indicates that the B-readers are in very 
short supply, and in some cases, a large backlog of X-rays could occur. Additionally, the false 
positive rate for radiologists reading X-rays has been reported as between 23-27% [11]. To date, 
there has been a lack of systematic, automated, and objective systems for detecting the presence 
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and assessing the progression of pneumoconiosis for individual coal miners other than by expert 
radiologists. 
 
Past methods for automated detection of pneumoconiosis include using classical image analysis to 
extract a set of handcrafted features from each lung field and zone. The features were extracted 
based on pixel intensities, c-occurrence matrix and frequency domain. A subset of these features 
was selected as input to train Support Vector Machine (SVM) classifiers to predict whether or not 
a region of interest in an X-ray contained any abnormalities [12]. This required substantial work to 
extract the handcrafted features and employ various methods to select discriminative features to 
build the SVM. In the last five years, due to advances in deep learning, there have been many 
successful applications of deep learning to image classification and abnormality detection 
problems. Some deep learning algorithms even “go beyond” the performance of medical 
professionals in a variety of medical imaging tasks. For example, CheXNet [13] was developed by 
Stanford Machine Learning Group to detect pneumonia from chest X-rays. The core of CheXNet is 
a 121-layer dense convolutional neural network (DenseNet) [14] that uses a chest X-ray image as 
input and generates the probability of pneumonia along with a heat map localizing the areas of 
the image most indicative of pneumonia. The CheXNet was trained on ChestX-ray14 image 
database [15] with over 100,000 X-ray images of 14 different thoracic diseases acquired from 
more than 30,000 unique patients. When training CheXNet, all pneumonia X-ray images from this 
database were labelled as positives and the rest of the images were deemed as negatives. Apart 
from the large training dataset, 420 chest X-rays were used for testing. The testing results showed 
that the CheXNet outperformed the average radiologist on pneumonia detection. 

 
With pneumoconiosis, the low incidence of this disease and restrictions on sharing patient data 
means that the number of available chest X-rays may not be sufficient for developing a deep 
learning model for automated detection of the disease. Therefore, detecting pneumoconiosis in 
chest X-rays remains a challenging task that relies on the availability of expert radiologists. 
 
In collaboration with Coal Services Health (CSH), Wesley Medical Imaging at Queensland, and St 
Vincent’s Hospital at Sydney, this project aimed at addressing the above problems by developing 
Computer-Aided Diagnosis (CAD) tools for automated pneumoconiosis detection using chest X-
rays.  

Achievements 

We have evaluated different approaches including statistical image analysis, classical machine 
learning methods, and some state-of-the-art deep learning models. We have also developed a 
customised cascade learning model for the automated detection of pneumoconiosis using both 
real and synthetic pneumoconiosis radiographs. With the cascade learning, we employed (1) a 
machine learning based pixel classifier with post processing for lung field segmentation, (2) Cycle-
Consistent Adversarial Networks (CycleGAN) [16] for generating abundant lung field images for 
training, and (3) an image classier using a 15-layer Convolutional Neural Network (CNN) trained 
with the CycleGAN generated and real chest X-ray images. These machine learning models are 
trained sequentially one at a time, then join forces to form a cascade machine learning workflow. 
Experiments are conducted to compare the classification results from several state-of-the-art 
machine learning models and ours. Our proposed model outperforms the others and achieves an 
overall classification accuracy of 90.24%, a sensitivity of 93.33%, and a specificity of 88.46% for 
detecting pneumoconiosis. The experiments also show improved performance on the 
pneumoconiosis detection by leveraging the synthetic images and demonstrate that the cascade 
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learning model can be potentially used as a tool for the pre-screening of pneumoconiosis. We 
have also developed a web-based demo to show how our proposed machine learning model 
works. 
 
Below is a summary list of what we have achieved during this project: 

 Obtained Human Research Ethics Approvals from CSIRO and St Vincent’s Hospital. 

 Collected chest X-ray images from CSH, ILO, Wesley Medical Imaging, St Vincent’s Hospital, 

and the USA National Institute of Health. 

 Developed and implemented algorithms for lung field and zone segmentation for both 

digital and digitised analogue X-ray images. 

 Developed statistical image analysis methods and evaluated some classical machine 

learning algorithms for automated detection of pneumoconiosis: 

o Using Multi-Layer Perceptron (MLP) based method for automated detection of 

pneumoconiosis which showed 71.11% pneumoconiosis detection accuracy. 

o Developed statistical image analysis methods for pneumoconiosis detection, including 

the automated detection and quantification of opacities for each zone. The quantitative 

analysis results can then be used for the classification of ILO categories of 

pneumoconiosis. Using custom image features based on evaluating disk-like structures 

within the lung fields, an accuracy of 76.9% for the automated detection of 

pneumoconiosis was achieved with a Ridge classifier. 

o Developed a three-class classification algorithm that uses texture image features and a 

neural network classifier to differentiate among normal, early stage pneumoconiosis 

and severe pneumoconiosis cases. The algorithm achieved a reasonably good recall for 

normal and severe pneumoconiosis images – 86% and 90%, respectively, but a weak 

recall of 38% for early stage pneumoconiosis images. 

o The binary classification of the same algorithm – normal images vs. pneumoconiosis 

images – achieved 83% accuracy, 85% sensitivity, and 82% specificity. 

 Investigated machine learning based one-class classification which has been used to deal 

with class imbalance - significantly more training images from one class are available than 

those from other classes. In this study, the number of normal X-ray images are much more 

than that of pneumoconiosis X-rays. We have conducted the following experiments: 

o Using One-Class Support Vector Machines (OC-SVM) with raw chest X-ray images as 

input, the best sensitivity, specificity and accuracy for discriminating between normal 

and pneumoconiosis X-rays are 73.3%, 92.31% and 73.17%, respectively.  

o Using Isolation Forest with raw chest X-ray images as input, the best sensitivity, 

specificity and accuracy achieved are 93.33%, 88.46% and 68.29%, respectively. 

o Using the hybrid model of Autoencoder [17] and a Feed Forward Neural Network 

classifier, the best sensitivity, specificity and accuracy produced are 60%, 88.46% and 

68.29%, respectively. 



 

Development of Automated Diagnostic Tools for Pneumoconiosis Detection from Chest X-Ray Radiographs|  ix 

 Investigated machine learning based two-class classification to identify normal and 

pneumoconiosis X-rays by training classifiers with equal number of training images from 

each class. We carried out the following experiments: 

o Using Support Vector Machines (SVM) with raw chest X-rays as input, the best 

sensitivity, specificity and accuracy we have obtained are 33.33%, 88.46% and 68.29%, 

respectively. 

o Using the hybrid model of Autoencoder and SVM, the best sensitivity, specificity and 

overall accuracy we have produced are 93.33%, 76.92% and 73.17%, respectively. 

o Using the hybrid model of CheXNet and SVM with deep features as input, the best 

sensitivity, specificity and accuracy we have obtained are 80%, 80.77% and 78.05%, 

respectively.  

o Using the pre-trained DenseNet with local image patches as input and aggregating the 

local classification results into a single image label, we have obtained a sensitivity of 

93.33%, specificity of 80.77%, and overall accuracy of 85.37%.  

 Developed a cascade deep learning model which outperforms others and achieved overall 

classification accuracy of 90.24%, a specificity of 88.46% and a sensitivity of 93.33% for 

detecting pneumoconiosis. 

 Implemented a web application “Black Lung Prediction Tool” that uses the cascade learning 

model to classify 41 chest radiographs available on the web site. The web demo can be 

found at http://confederate.csiro.au/.  

Limitations and Suggestions 

Due to the low incidence of pneumoconiosis in Australia we were able to validate our tool only 
with a limited number of chest X-rays with pneumoconiosis. To make our tool more robust and 
suitable for clinical use, we suggest: 
  

 To work with radiologists on additional acquisition of chest X-rays with features of 

pneumoconiosis;  

 To improve our automated system for detecting and grading pneumoconiosis into different 

categories of severity when more chest radiographs become available; and  

 To set up a pilot study where our tool is being used in a clinical setting in parallel with B- 

readers. This can be done in collaboration with Coal Services Health to examine their chest 

radiographs currently reread by an independent radiologist every quarter. This may take 

form of a web-based (secure) application or a stand-alone tool installed on Coal Services 

Health hardware. This pilot software can be used retrospectively on the chest radiographs. 

The feedback from the pilot study can be used to further improve functionality and 

performance of our automated pneumoconiosis detection tool.  

 

  

http://confederate.csiro.au/
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1 Human Research Ethics Approval 

We prepared the study protocol for this project [18] and submitted it for ethical and scientific 

review by St Vincent’s Hospital Research Office. It was granted ethical and scientific approval for 

this multi-centre project on 15/08/2017.  Also, this project received an approval from CSIRO 

Health and Medical Human Research Ethics Committee on 12/10/2016 [19]. All research panels 

deemed it a low/negligible risk project. 
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2 Image Data Collection 

We have collaborated with various organisations to obtain image datasets and associated labels to 

be used in the development of the automated diagnostic system. We have also used publicly 

available NIOSH teaching chest X-ray datasets to develop parts of the system. All radiographs used 

in this study are posterior-anterior (PA) radiographs, some of which are fully digital, while some 

are digitized films. 

2.1 Chest X-Ray Images from International Labour Organisation (ILO) 

We have purchased a digital set of 22 ILO Standard Radiographs in DICOM format. This set is used 

in the ILO Classification System for Pneumoconiosis on Chest Radiographs (ILO Classification). ILO 

Classification protocol recommends classifying a subject’s radiograph by visually comparing it with 

ILO Standard Radiographs. For the purpose of this project, we have selected 17 chest radiographs 

out of the 22.  The selected images depict complete lung fields – either normal, or with small 

parenchymal abnormalities consistent with pneumoconiosis.  In addition to this dataset, we have 

downloaded the online B Reader Syllabus by the National Institute for Occupational Safety and 

Health intended for preparing doctors to take the ILO Classification exam (NIOSH (2000)) [20]. 41 

teaching images from this resource were selected for our study, using the same criteria as for 

selecting ILO Standard Radiographs.  These data are used in this project for training the automated 

pneumoconiosis diagnostic system. 

2.2 Chest X-Ray Images from Wesley Medical Imaging, QLD 

We have collected 62 chest X-rays belonging to normal individuals (56 males and 6 females, all de-

identified), and 36 chest X-rays with small parenchymal opacities consistent with pneumoconiosis 

which belong to 27 de-identified male individuals. These data are also used in this study for 

training and evaluation of the automated pneumoconiosis diagnostic system. 

2.3 Chest X-Ray Images from National Institute of Health, the USA 

We have also downloaded the ChestX-ray14 dataset from National Institute of Health that was 

made publicly available in September 2017. This data set includes over 100,000 X-ray images of 

more than 30,000 unique patients collected from a hospital Picture Archiving and Communication 

System (PACS) with automatically text-mined image labels from their associated radiological 

reports [15]. These data are used in this study for exploring deep learning-based methods for the 

automated detection of pneumoconiosis chest X-rays. 
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2.4 X-Ray Images from CSH 

We have acquired 511 chest X-ray images from Coal Services Health (CSH), including 505 chest X-

rays exhibiting no signs of pneumoconiosis, 5 chest X-rays classified as ILO 0/1 that might have 

features consistent with pneumoconiosis, and one X-ray classified as ILO 2/2. 

2.5 X-Ray Images from JSRT Database 

JSRT database [21] is a public database that has been previously used in many lung segmentation 

studies [24]. We downloaded this database to train the lung segmentation algorithm described in 

Section 3. JSRT contains 247 digitized chest X-rays with annotated lung masks (“gold standards”).  
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3 Lung Field Segmentation 

Delineation of the lung fields in chest X-rays, otherwise called lung segmentation, is a pre-requisite 

for the most of computer-aided evaluation systems for chest X-rays. We have implemented a 

previously published algorithm that employs Pixel Classification to distinguish between lung and 

non-lung areas in a radiograph. Further we have introduced necessary modifications to the 

algorithm to improve its performance on fully digital radiographs. 

3.1 Pixel Classification 

3.1.1 Algorithm description and implementation 

Pixel Classification with post processing (PC) was first described and compared with the previous 

state-of-the-art segmentation techniques in [23]. In 2015 it was still compared favourably with 

other lung segmentation algorithms validated on the same JSRT database [24]. PC yielded around 

95% overlap score with the JSRT gold standard lung masks. 

PC is a pattern recognition technique, where training and testing stages can be distinguished. In 

the training stage an image is resized to a working resolution and subsampled. For each sample in 

a subsampled image a set of features are extracted. The features are computed from a 

neighbourhood centred on this sample and are devised to characterise local image structures. It is 

assumed that small neighbourhoods from inside the lung fields have a distinctively different 

appearance to small neighbourhoods outside the lungs. In this algorithm, the output of Gaussian 

derivative filters at multiple scales are used to characterize local image structures. In addition, X 

and Y coordinates of each sample are included in the feature set. Each such feature set has a 

corresponding label, 0 – if a pixel belongs to image background, 1 – for a pixel in the right lung, 

and 2 – for a pixel in the left lung. Next, a K-Nearest Neighbour (k-NN) classifier is trained with the 

feature sets and the corresponding labels, learning how to map pixel features to class labels. In the 

end of the training stage a classifier can compute a probability that a new input pixel belongs to a 

certain object class (image background, right lung or left lung).  

In the testing stage, a new unknown image is resized to the working resolution, then, the same 

feature set is computed for each pixel in the image. A trained k-NN classifier takes each pixel’s 

feature set as an input and computes a probability for that pixel to belong to each of the three 

classes, p0, p1 and p2. This allows us to create a lung probability map P. It has the same size as the 

test image, and its pixel values, p(x,y) = p1(x,y) + p2(x,y), define a probability that a pixel belongs to 

one of the lung fields (Figure 1(b)). The obvious way to turn the probability map into a lung mask is 

thresholding it at a probability of 0.5, meaning that every pixel that received a probability greater 

than 0.5 is assumed to be a lung pixel. However, in this way, lung segmentation will always contain 

clouds of isolated pixels near the lungs’ border. To ensure connectedness of the lung fields, we 

blur the probability map first, then perform thresholding at 0.5. The two largest connected objects 

in the resulting binary mask are labelled as 1 (the right lung) and 2 (the left lung), and holes in the 

masks are filled (Figure 1(c)). 
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(a)                                                      (b)                                                    (c) 

Figure 1 A chest radiograph (a) with a corresponding probability map (b) computed using Pixel Classification, and a 

labelled lung mask (c) obtained by post-processing the probability map. 

This algorithm was implemented in Python using image analysis and machine learning toolkits 

SimpleITK [25] and scikit-learn [26]. 

3.1.2 Training and validation  

The JSRT database with its “gold standard” lung masks was used for training PC and validating its 

performance. 124 randomly selected radiographs from JSRT database were used to train the 

algorithm, and the rest of the database was used to test it. We obtained very similar results to 

those which were published in [23] – an average 95% overlap score with 1% standard deviation on 

123 test X-rays. 

3.2 Application to Digital X-rays 

Next, we applied the PC algorithm trained with the full JSRT database of 247 images to 

radiographs from the Wesley Medical Imaging dataset (Section 2.2) as well as to the radiographs 

from the ChestX-Ray14 dataset (Section 2.3). The resulting segmentation was not satisfactory, as 

in many cases the algorithm failed to correctly separate the lung fields from other structures in the 

images. The main reason for this, in our opinion, was different technologies employed to acquire 

JSRT radiographs and the radiographs in the other two datasets. JSRT radiographs were digitized 

copies of film x-rays while the other radiographs were fully digital images acquired using digital 

radiography units. Such images look differently and have different pixel intensity distributions. To 

illustrate this, Figure 2(a) shows a digitized radiograph from JSRT database and the histogram of its 

intensity values, and Figure 2(b) shows a digital radiograph from the Wesley Medical Imaging 

dataset and its corresponding histogram.  

One way to successfully apply the PC lung segmentation algorithm to digital data is to train it on 

images similar to the test data, i.e. on some other set of digital radiographs. For this, we would 

need to find or manually produced “gold standard” lung masks for training. Alternatively, the test 

data could be made more similar to the already available training data by means of image 

processing. Since obtaining lung masks for training was not a feasible option for us, we opted to 

simulate a digitized “look” on the images from our digital datasets.  
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We have employed histogram matching to normalize the pixel intensities of digital images 

based on the pixel intensity values of digitized radiographs. It is based on the work published 

in [27]. We have randomly selected ten reference images from JSRT database. A digital 

radiograph was then matched to each of the reference images, and an average of the ten 

resulting images was computed. The intensity histogram of such a simulated image 

resembled more closely the histograms of digitized radiographs. To illustrate this, an image 

in Figure 2(c) shows the result of histogram matching between a digital radiograph in Figure 

2(b) and the ten reference JSRT images. Figures 2(e) and 2(f) show the corresponding 

intensity histograms. Note that the histogram in Figure 2(f) is noticeably more similar to the 

histogram of a digitized chest X-ray (Figures 2(a) and 2(d)). 

   

                      (a) 

 

                     (d) 

                           (b) 

 

                           (e) 

                          (c) 

 

                          (f) 

Figure 2 A digitized X-ray from JSRT database (a) and its intensity histogram (d); a digital X-ray from Wesley Medical 

Imaging (b) and its intensity histogram (e); and (c) the modified version of the X-ray in (b), with its intensity 

histogram (f) that now resembles the histogram in (d). 

After applying histogram matching to all the radiographs from the Wesley Medical Imaging dataset 

and the ChestX-Ray14 database, it became possible to compute lung masks successfully by using 

Pixel Classification trained on JSRT database. Visual inspection suggested that the computer-

generated masks have minimal errors and cover the lung fields sufficiently for our goal to 

automatically detect signs of pneumoconiosis inside the lungs. Figure 3 demonstrates the four 

examples of the lung fields segmented from the Wesley Medical Imaging dataset radiographs 

using the PC lung segmentation with histogram matching.  
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                                 (a) 

 

                              (c) 

                             (b) 

 

                               (d) 

Figure 3 Examples of the lung fields automatically segmented from the digital radiographs obtained from Wesley 

Medical Imaging. Images (a) and (b) depict normal lungs, while (c) and (d) depict lungs with some features of 

pneumoconiosis. 

3.3 Lung Zones 

According to the ILO Classification system [10], the profusion of small opacities is determined over 

each of the six lung zones. Therefore, the last step in our lung segmentation algorithm performs 

division of the lung fields into zones. The automated zone division replicates the ILO Classification 

System [10] that states that “each field is divided into three zones by horizontal lines drawn at 

approximately one-third and two-thirds of the vertical distance between the lung apices and the 

domes of the diaphragm”. The algorithm assigns each zone a label, from 1 to 6, for an easy 

reference. Figure 4 demonstrates a few examples of the automated zone division. 
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Figure 4 Examples of the lung fields automatically divided into six zones according to ILO Classification System. 

Zones’ labels, from 1 to 6, are mapped to colours for the reader’s convenience. 
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4 Statistical Image Analysis and Classical Machine 
Learning Based Automated detection of 
Pneumoconiosis 

In this section, we report the experimental results obtained by employing hand crafted features 

and classical machine learning approaches like Support Vector Machine (SVM), Multi-Layer 

Perceptron (MLP), Perceptron, K-Nearest Neighbours algorithm (K-NN), Ridge Classifier, Random 

Forest. The handcrafted features are extracted from X-Ray images using statistical image analysis 

algorithms. We have evaluated various classical machine learning schemes for the detection of 

pneumoconiosis. One is based on one-class classification and the other is based on two-class 

classification. 

4.1 One-Class Classification Based on Classical Machine Learning 

With the images provided by Coal Services Health, only one was clearly an X-ray with 

pneumoconiosis (ILO 2/2). To leverage the availability of large number of normal images and small 

number of pneumoconiosis images, one-class classification is a straightforward choice. With this 

method, a classifier is trained to learn and summarise the features of normal images in a training 

dataset which contains normal images only. After training the classifier, we expect that the 

pneumoconiosis images can be identified as anomalies or outliers by the classifier, in comparison 

with the normal X-ray images used for the training.  

Based on the above idea, we tried three combinations of feature extraction methods and 

classifiers. The experimental settings and results are reported below. 

4.1.1 Support Vector Machines 

Support Vector Machines (SVMs) are a set of supervised learning methods used for classification 

and regression. It was first proposed by Vapnik et al. for classification [28] and has become an 

intensive research area in the last few decades. The basic idea of SVM for solving classification 

problems is to construct an optimal hyperplane or a set of optimal hyperplanes in a high 

dimensional feature space. Because of the nature of the feature space in which these hyperplanes 

are generated, SVM can exhibit a large degree of flexibility in handling classification tasks of varied 

complexities. They have been used widely in various applications such as face recognition [29]. 

When performing classification tasks, SVM is a discriminative classifier defined by one, or a set of, 

optimal hyperplanes which are constructed during training. Therefore, the SVM algorithms are 

designed to find the hyperplane that gives the largest minimum margin to the training samples. 

The two key elements in SVM are (1) a general-purpose learning machine, and (2) a problem 

specific function, which can be a linear, polynomial, sigmoid or Radial Basis Function (RBF). The 

flexibility of these kernel functions enables the SVM to explore a wide variety of hypothesis 

spaces. SVM can be formulated with two things: the hypothesis spaces and the loss functions. 
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SVM is effective in high dimensional spaces, even in cases where number of dimensions is greater 

than the number of samples. 

There are two types of SVM for classification, namely C-SVM [30] and nu-SVM [31]. Their trainings 

involve different error functions to minimise. ‘C’ and ‘nu’ are both regularisation parameters used 

to improve the accuracy of the classification by helping implement a penalty on the 

misclassifications that are performed while separating the classes. ‘C’ ranges from 0 to infinity, the 

larger the C, the more the error is penalized. ‘nu’ is between 0 and 1, it is related to the ratio of 

support vectors and the ratio of the training error and serves as an upper bound on the fraction of 

margin errors and a lower bound on the fraction of support vectors.  

4.1.2 Autoencoder 

In our study, we have also used Autoencoder for feature extraction. It is a specific type of 

feedforward neural networks where the input is the same as the output. They compress the input 

into a lower-dimensional code and then reconstruct the output from the code. The code is a 

compact “summary” or “compression” of the input, also called the latent-space representation. 

An Autoencoder consists of 3 components: encoder, code, and decoder as shown in the following 

figure. The encoder compresses the input and produces the code, and the decoder then 

reconstructs the input only using this code. To build an Autoencoder, we need an encoding 

method, a decoding method, and a loss function to compare the output with the target which is 

the same as the input. 

The Autoencoder is mainly a dimensionality reduction or compression algorithm with the 

following properties: 

a) Data-specific: An Autoencoder is only able to meaningfully compress data similar to what 
they have been trained on. Since it learns features specific to a given training dataset, we 
cannot expect an Autoencoder trained on one type of images to compress a different type 
of images. 

b) Lossy: The output of an Autoencoder will not be the same as the input, it will be a close but 
degraded representation. 

c) Unsupervised: To train an Autoencoder, we just use the raw input data as its input and 
output. The Autoencoder is considered as an unsupervised learning technique since it does 
not require explicit labels to train on. They are self-supervised because they generate their 
labels from the training data. 

 

As a popular neural network model that learns hidden representations of unlabelled data, an 

Autoencoder [32, 33] and its variants [34, 35] can also be used as a feature extractor to learn a 

representation of image data. In this study, we use Autoencoder to learn image features and then 

feed the features into Neural Networks (NN) for the detection of pneumoconiosis X-rays. 
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Figure 5 The Autoencoder network architecture - an input Lung image is fed to the encoder and the network is 

trained to encode and decode the image 

4.1.3 Experiments using OC-SVM with Raw Chest X-ray Images as Input 

In these experiments, the masked chest X-rays are used as the input of an OC-SVM.  Using the lung 
field segmentation algorithm from Section 3, we successfully generated the lung masks of normal 
X-ray images. The masked radiographs are generated by multiplying the raw chest-X-ray images 
and their lung masks. The lung masks are automatically retrieved using a pixel-based classification 
method as described in Section 3. The masked images are resized to 512 x 512 matrix. Some 
sample masked X-ray images are shown in Figure 3. 

The OC-SVM is quite similar to the standard SVM except that it aims to maximize the margin 
between positive and negative samples for better approximation of the class boundary. The OC-
SVM has been widely used in identifying anomalies [36-38].  It uses the raw images or image 
features to learn and create a tight envelop around normal image data. When a new image is 
presented to the OC-SVM, it is accepted or rejected according to its resemblance to the training 
samples. The OC-SVM is useful in the situations where there are unbalanced classes in training 
data. For example, 99% of labelled images are from a single category and 1% of the labelled 
images are from other classes. In this case, the task is to identify the 1% outlier images that are 
not from the single category.  

To train the OC-SVM, we used 502 normal X-ray images provided by Coal Services Health. The test 
image dataset is composed of normal and pneumoconiosis X-ray images from Wesley Medical 
Imaging, ILO, and NIOSH, including 15 pneumoconiosis and 26 normal X-ray images. 

The kernel of the OC-SVM used is the non-linear radial basis function (RBF). There is an important 
adjustable parameter, ‘nu’, which has significant impact on final accuracy of classification. We 
have tested a range of values of this parameter, including 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5. The 
test results show that the best sensitivity, specificity and accuracy are achieved when nu = 0.01 
and nu = 0.5, respectively. 

Table 1 Sensitivity, specificity and accuracy obtained using OC-SVM with the masked raw X-ray images as input 

nu Sensitivity Specificity Accuracy 

0.01 0.4 0.9231 0.7317 

0.5 0.7333 0.4615 0.5610 
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4.1.4 Experiments Using Isolation Forest with Raw Chest X-ray Images as Input 

In these experiments, we used an Isolation Forest classifier [39] to identify the pneumoconiosis 
images. The Isolation Forest is derived from Random Forest (RF) [40, 41], and is adapted to isolate 
outliers in a dataset. The Random Forest is a broadly used learning method 
for classification, regression and other tasks by constructing a multitude of decision trees at 
training time and outputting the class that is the mode of the classes for classification problems or 
mean prediction for regression problems of the individual trees. The training and testing datasets 
used in the experiments are the same as that used in the experiments described in Section 4.1.3.  

“Contamination Ratio” is an important parameter in Isolation Forest. This parameter has 
significant impact on the performance of the Isolation Forest. It is used to adjust the learned 
classification curve that encloses all normal data points more tightly or more loosely. The 
contamination parameter was chosen from a list of values [0.1, 0.2, 0.3, 0.4, 0.5], and our 
experiments show that the best accuracy, specificity, and sensitivity are achieved when the 
contamination = 0.1 and 0.5, respectively. The sensitivity, specificity and accuracy are listed in the 
following table. 

  

Table 2 Sensitivity, specificity and accuracy obtained using Isolation Forest with raw chest X-rays as input 

Contamination Sensitivity Specificity Accuracy 

0.1 0.3333 0.8846 0.6829 

0.5 0.9333 0.2308 0.4878 

4.1.5 Experiments using the Hybrid Model of Autoencoder and A Feed Forward Neural 
Network Classifier 

The hybrid model of Autoencoder and the feed forward neural network combines the ability of 
deep neural networks to extract rich representation of image data with the one-class objective of 
creating a tight boundary around normal image data [42]. With the hybrid model, data 
representation in the hidden layer is customized for anomaly detection. This is different from 
other one-class classification approaches which employ a hybrid model of learning deep features 
using an Autoencoder and then feeding the features into a separate model for anomaly detection 
like One-Class SVM (OC-SVM). 

Deep learning-based framework has been used as a standard feature extraction technique in 
image processing. In this study, we used an Autoencoder as our network architecture. The 
intuition behind this is that when the Autoencoder is trained to reconstruct the normal images 
only, then the anomalies cannot be fully recovered. Thus, the extracted features will exhibit 
discriminative characteristics, and will help improve the accuracy of the one-class classifier.  

The Autoencoder contains three densely connected layers: input, hidden and output layers. The 
input layer takes 512 x 512 masked X-ray images as inputs, the size of the output layer is the same 
as that of the input layer. The output layer is used to reconstruct the input via the mean squared 
error loss. The size of the hidden layer is an adjustable parameter, and we have tested the 
following numbers, 16, 32, 64, 128, 256, aiming to get the best performance of classification. The 
Autoencoder is trained to obtain the representative features of the input images, then the 

https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Decision_tree_learning
https://en.wikipedia.org/wiki/Mode_(statistics)
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encoder layers of this pre-trained Autoencoder is copied and fed as input to the feed-forward 
neural network with one hidden layer. The weights of the encoder network are frozen while 
training the feed-forward neural network.  

In addition, to better customize both the Autoencoder for the feature extraction and the feed 
forward neural network classifier to our dataset, we constructed an end-to-end architecture. 
Specifically, we added another two densely connected layers (one with 128 neurons and the other 
with one neuron) as the One-Class Neural Network (NN) classifier.  

The training and testing datasets are the same as those used in the previous experiments. We 
adjusted two important parameters to tune our OC-NN model. One is the size of hidden layer in 
the Autoencoder part, and the other is the parameter ‘nu’, which has a similar function as the ‘nu’ 
in OC-SVM. Our experiments show that the best performance was achieved with the size of 
hidden layer 128, nu = 0.01, 0.1 and 0.5, as shown in the following table.   

Table 3 Sensitivity, specificity and accuracy obtained from the hybrid model of Autoencoder and the feed forward 

Neural Network 

nu Sensitivity Specificity Accuracy 

0.01 0.0667 0.8846 0.5854 

0.1 0.3333 0.7692 0.6098 

0.5 0.6 0.1923 0.3415 

 

4.2 Two-Class Classification Using Classical Machine Learning 

We have also explored various two class classification methods to evaluate their performance. The 
two class classification methods are developed to distinguish between just two classes of objects. 
In this study, we employ the two class classification to identify normal or pneumoconiosis X-rays. 
Similar to the one-class classification experiments, we investigated several two class classification 
methods and their hybrid models. 

4.2.1 KAZE and MLP Based Automated Detection of Pneumoconiosis 

When the image dataset for training a machine learning model is not very large, classical machine 

learning tools are normally used. In this study, we have used the ILO Standard Radiographs, the X-

ray images downloaded in B Reader Syllabus and the image dataset provided by Wesley Medical 

Imaging. The total number of images is 147, including 80 normal X-ray images and 67 

pneumoconiosis images ranging from ILO 0/1 to 3/3. These images are split into two groups, 70% 

is used for training and 30% for testing. The lung fields of these images are segmented, and the 

lung field images are used for the training and testing. The following figure shows some examples 

of the masked lung field images used in the study. 
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      (a) 0/0                      (b) 1/0                          (c) 1/1 

 

(d) 2/2                                         (e) 2/3                                            (f) 3/3 

Figure 6 Sample lung field images of various ILO categories used in the study 

 

We used KAZE algorithm to extract local features from the images [43-44]. KAZE is a Japanese 

word meaning “wind”, it is defined as the flow of air on a large scale ruled by nonlinear processes. 

The algorithm is a novel multiscale 2D feature detection and description method in nonlinear scale 

spaces by means of nonlinear diffusion filtering. The evaluation reported in the paper [43] shows 

the KAZE outperforms the previous state-of-the-art methods in feature detection and description. 

Because the number of descriptors for different images varies, we cannot simply use the local 

features extracted as the input of a neural network. Instead, we turn the descriptors into a single 

histogram of visual words using the Bag of Words strategy. The histogram is then used as the input 

to our neural network. 

The neural network we used is Multi-Layer Perceptron (MLP). Unlike many other models in 

Machine Learning that are constructed and trained at once. The MLP can be trained more than 

once, that is, the weights of the MLP can be adjusted based on the new training data when they 

become available. This is typically useful when we collect more images to improve the 

performance of the neural network. 

From the 147 X-ray images, we randomly selected 56 normal X-ray images and 46 positive X-ray 

images for training the MLP and used 24 normal and 21 positive X-ray images which are not used 

in the training to test the MLP. The reading of the training images, KAZE feature extraction, 

creation of network, and training process took about 207.6 minutes, about 2.02 minutes per 

image. During the testing, to quickly calculate the histogram of visual words for each test image, a 

FLANN (Fast Library for Approximate Nearest Neighbours) model [45] was trained and employed. 

The reading of the test images and automated detection of pneumoconiosis took about 81.5 
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minutes, about 1.8 minutes per image. The confusion matrix for the automated detection of 

pneumoconiosis is shown below: 

Table 4 Confusion matrix of the automated pneumoconiosis detection using the MLP 

 Normal Positive 

Normal 18 6 

Positive 7 14 

 

The confusion matrix shows that the accuracy for the automated pneumoconiosis detection is 
71.11%. With more images, this accuracy can be further improved. 

4.2.2 Experiments Using SVM with Raw Chest X-Ray Images as Input 

In these experiments, we used raw X-ray images as inputs of SVM for training and testing. We 

have tried different values of the parameter ‘C’ to observe the SVM classification results. The 

parameter ‘C’ is a regularization parameter that controls the trade-off of optimisation between 

the achieving of a low training error and a low testing error that is the ability to generalize the 

SVM classifier to unseen data. For large values of ‘C’, the optimization will choose a smaller-margin 

hyperplane if that hyperplane can get all the training images classified correctly. Conversely, a very 

small value of ‘C’ will lead to a larger-margin separating hyperplane, even if that hyperplane 

misclassifies more images. 

In the experiments, we use the following setup: 

 Training image dataset: 112 images including 56 normal and 56 pneumoconiosis X-ray 

images from Wesley Medical Imaging, ILO, NIOSH and Coal Services Health. 

 Testing image dataset: 41 images including 26 normal and 15 pneumoconiosis X-ray images 

from Wesley Medical Imaging, ILO, NIOSH and Coal Services Health.  

 We have included ILO 0/1 images in pneumoconiosis category for training and testing 

assuming they have some signs of pneumoconiosis that we did not want to miss. 

The best performance of SVM is recorded when C = 1, and the experimental results are shown in 

the table below: 

Table 5 Sensitivity, specificity and accuracy obtained using SVM 

Sensitivity Specificity Accuracy 

0.3333 0.8846 0.6829 

4.2.3 Experiments Using the Hybrid Model of Autoencoder and SVM  

With these experiments, we first trained the Autoencoder for feature extraction. The training 
dataset includes 502 normal X-ray images provided by Coal Services Health. 
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To train the two-class classifier SVM, as it requires a balanced positive-negative dataset, we 
carried out experiments with the same experimental setup in the previous section. Different 
values for the parameter ‘C” have been evaluated, the best accuracy, sensitivity and specificity are 
observed when the hidden layer size is set to 128, and C = 1, 0.1 and 2, respectively. The 
experimental results are illustrated in the following table.  

Table 6 Sensitivity, Specificity and accuracy obtained from the hybrid model of Autoencoder and SVM 

C Sensitivity Specificity Accuracy 

1 0.7333 0.7308 0.7317 

0.1 0.9333 0.3077 0.5366 

2 0.5333 0.7692 0.6829 

4.2.4 Automated Detection of Pneumoconiosis with Custom Image Features 

We have quantified the profusion of opacities by, firstly, enhancing disk-like structures in a chest 

X-ray and, secondly, computing statistical features of the distribution of detected “disks” in each 

of the lung zones. We employed not one, but three disk-enhancing image filters, at different 

spatial resolution scales, in order to capture opacities of different sizes. Our implementation of the 

disk-enhancement filter is based on the published work in [46].  We restricted the search of disk-

like structures to the lung fields only using pre-processed images as depicted in Figure 3 and Figure 

6.  Some examples of images where only circular structures are enhanced, and other structures 

are suppressed are given in Figures 7(a) and 7(c). One can visually appreciate differing amount of 

circular structures in a normal radiograph (Figure 7(a)) and a radiograph that has a 3/3 

pneumoconiosis category. 

Following this, we computed statistics of detected disks for each lung zone. The image with 

enhanced disk structures was binarized (see Figures 7(b) and 7(d)), and the four values that 

summarized the distribution of the disks in the lung zone were then computed, namely,  

 DotNo – the number of disks in a zone 

 DotMean - the average pixel intensity of disks in a zone 

 DotArea- the average area of a disk, and 

 DotDensity- the density of disks in the zone 

The profusion of opacities in the worst affected zone is most important as it is the ILO grade of this 

zone which determines the ILO grade designated to the radiograph. We have chosen the worst 

affected zone in the lung based on the value of DotDensity feature as it describes the proportion 

of a lung zone that is covered with disk-like structures. The worst affected zone was selected at 

each spatial resolution scale. The resulting feature vector describing the profusion of small 

opacities in the radiograph consisted of 12 features: four statistical features for the worst affected 

zone selected at each spatial resolution scale. 

As with KAZE features described in the previous section, with these custom features we used 

classical machine learning strategies to automatically detect normal chest x-rays and the ones with 

features of pneumoconiosis. We compared the performances of five different classifiers: Linear 

Support Vector Machine (SVM), Perceptron, K-Nearest Neighbour (KNN), Ridge Classifier and 
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Random Forest, using Leave One Out methodology: Each training set is created by taking all the 

samples except one, the test set being the sample left out. Thus, for n samples, we have n 

different training sets and n different test sets. This cross-validation procedure does not waste 

much data as only one sample is removed from the training set. The classification was very fast. It 

took between 0.3 sec and 2.2 sec for any of the five classifiers to perform Leave One Out on the 

147 images. The performance of different classifier was measured in terms of accuracy, and the 

results are given in Table 7. For the best performing classifier, Ridge Classifier, we obtained 

sensitivity 63% and specificity 87% (which equals to false positive rate of 13%).  

Table 7 Accuracy of different classifiers 

Linear SVM Perceptron K-NN Ridge Classifier Random Forest 

0.748 0.653 0.693 0.769 0.708 

 

 

(a)                                                          (b)                                                      (c) 

 

                         (d)                                                        (e)                                                       (f) 

Figure 7 Examples of two radiographs filtered with a disk-enhancing filter, (a) normal radiograph, (d) radiographs 

with small opacities graded 3/3. In (b) and (e) disk-like structures are enhanced, and in (c) and (f) - separated from 

the background by thresholding the images. 

We have demonstrated here that the custom image features devised specifically to quantitatively 

describe the radiographic features of pneumoconiosis are useful and show promising results in the 

automated classification. We have also shown that two linear classifier, Linear SVM and Ridge 
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Classifier, outperform other classifiers on this dataset. We believe that the overall classification 

performance, irrespective of a classifier or features used, will improve when more relevant data 

become available. 

4.3 Classification of Profusion of Small Opacities 

In this section we present a machine learning based method to classify pneumoconiosis into 
different categories with respect to the profusion of small opacities in the lungs (i.e. ILO grade). 
We used chest X-rays from previously described datasets. The results obtained with our method 
are presented in this section, however detailed discussions on the results as well as the limitations 
of our method are reported in Section 7. 

4.3.1 Data Labelling 

ILO Classification System [10] provides a set of Standard Radiographs that define four categories of 
the profusion of small opacities: 0, 1, 2, and 3. The ILO grade assigned to a radiograph is classified 
into one of 12 ordered subcategories: 0/-, 0/0, 0/1, 1/0, 1/1, 1/2, 2/1, 2/2, 2/3, 3/2, 3/3, 3/+. 
These subcategories are divisions of the continuum of increasing profusion of small opacities. The 
first number designates the ILO standard radiograph the patient radiograph most closely matches, 
and the second number reflects whether the patient radiograph could be considered to be 
between grades. Thus, the first number reflects the predominant profusion grade and the second 
number reflects whether the patient’s radiographic profusion is slightly more or less than the 
standard radiograph of that ILO grade. 

In our combined datasets, often only a few samples of some of the 12 categories are available, for 
example, there are only 4 images classified as 3/2 by experts. There is none classified as 0/- or 3/+.  
Our data are also very unbalanced – the number of normal images vastly exceeds the number of 
images in any other categories (Table 8). To make automated classification possible, we must 
aggregate available data into a smaller number of classes.  

Table 8 Number of training images in each subcategory 

Category 0/0 0/1 1/0 1/1 1/2 2/1 2/2 2/3 3/2 3/3 

#Samples 82 3 8 14 4 4 12 8 4 8 

 

One obvious option would be to have four classes - Normal (0), Class 1, Class 2, and Class 3 – based 
on the preferred category (the number on the left to the oblique stroke, for example, it is 3 in 
Subcategories 3/2, 3/3, and 3/+). In our case, such a division is still very unbalanced, where Normal 
class has 85 images while Class 3 only has 12 images. Therefore, we have decided to combine the 
subcategories into three broader classes that reflect the severity of profusion. To do that, we have 
considered the following three setups. 

Table 9  Experimental setup 1 

Class 0 1 2 

Including subcategories 0/0 0/1, 1/0, 1/1, 1/2 2/1, 2/2, 2/3, 3/2, 3/3 

Number of samples 82 29 36 
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Table 10 Experimental setup 2 

Class 0 1 2 

Including subcategories 0/0 0/1, 1/0, 1/1, 1/2, 2/1  2/2, 2/3, 3/2, 3/3 

Number of samples 82 33 32 

 

Table 11 Experimental setup 3 

Class 0 1 2 

Including subcategories 0/0, 0/1 1/0, 1/1, 1/2, 2/1  2/2, 2/3, 3/2, 3/3 

Number of samples 85 30 32 

 

In Experiments section we present results obtained with each experimental setup. 

4.3.2 Methods 

Previous work 

In our previous work, we used custom image features, obtained per each lung zone and 
aggregated into a vector representing an entire lung, to classify an X-ray into normal or 
pneumoconiosis classes. The image features quantified the distribution of bright disk-like 
structures in a lung zone. The best classification performance achieved on the same dataset was 
77% accuracy with 63% sensitivity and 87% specificity. A closer look at the image features revealed 
that a lot of normal disk-like structures inside the lung fields were enhanced even stronger than 
small opacities, for example, rib crossings and vessel cross-sections, therefore limiting the strength 
of such custom features to differentiate between normal structures and pneumoconiosis 
structures on an x-ray image, especially when image features are aggregated over large areas. 

Proposed approach 

In this report we propose to use local texture features extracted from small regions of interest 
(ROIs) placed inside the lungs, and a three-stage classification system, that is, firstly, classifies ROIs 
into one of three classes described in “Data labelling” section, and then derives a class for each 
lung zone from the results of ROIs’ classification. In the last stage, an image label is obtained by 
applying a fusion rule to the result of zone classification. We train separate classifiers for ROIs 
extracted from different lung zones. 

Lung partitioning and ROI extraction 

Lung fields were segmented from radiographs using multi-resolution pixel classification as 
described in Section 3. Each lung was automatically divided into three zones by dividing the 
vertical distance between the lung apices and the domes of the diaphragm into three equal parts 
and drawing a horizontal line at each division point. The algorithm assigns each zone a label, from 
1 (Right Upper Zone, RUZ) to 6 (Left Lower Zone, LLZ), for an easy reference. 

As shown in Figure 9, Regions of Interest were automatically fitted into the periphery of each 
zone. We opted to only cover the periphery of the lungs with ROIs because the part of the lungs 
closest to mediastinum, including the hilum, has a very complex textural appearance with multiple 
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overlapping structures, and might not be a very useful site for detection of small opacities, 
automatically or even manually. 

 

A.  

 

 

B.  

 

 

 

Figure 8 Flow chart of the proposed system. (A) Training phase (blue path), and (B) Testing phase (red path) 

Local texture features 

A powerful method for local texture analysis is filtering the image with a multiscale filter bank of 
Gaussian derivatives and calculating the moments of histograms from regions in the derived 
images. Using multiple scales allows us to characterize texture elements of different sizes, and 
analysis of local histogram considers the texture primitives regardless of their spatial distribution 
[47]. This general approach to texture characterization has been previously applied to detect 
interstitial abnormalities in chest radiographs and thoracic CT scans [48].  

Following this approach in our project, radiographs were filtered with Gaussian derivatives of 
orders 0, 1, and 2 at five scales, s = 1, 2, 4, 8, 16. The four central moments - the mean, standard 
deviation, skewness and kurtosis – were computed for each ROI from the original and filtered 
images. Two position features were also added to the feature vector, namely, the x and y 
coordinates of the centre point of each ROI, computed relatively to the centre of mass of the lung 
containing it and scaled to the unit variance. In total, 126 features were extracted from each ROI. 

ROIs’ classification and label fusion 

Six zone classifiers were trained with feature vectors extracted from ROIs. Each classifier only 
accepted features extracted from ROIs from a certain lung zone. Therefore, we built a RUZ 
classifier, an RMZ classifier etc. When a classifier is applied to a previously unseen test image, it 
assigns a class label to each ROI within its zone. To obtain a class label for the whole zone, the 
following fusion rule was applied: a zone is assigned to Class 0 (Normal), only if the number of ROIs 
classified as Class 0 is equal to or larger than the total number of ROIs classified as 
pneumoconiosis (Class 1 or Class 2). Otherwise, the zone is assigned to Class 1 if the number of 
ROIs classified as Class 1 is equal to or larger than the number of ROIs classified as Class 2. If the 
number of ROIs classified as Class 2 is larger, then the zone is assigned to Class 2. The left box in 
Figure 10 shows this rule in algorithmic notation. 

To obtain a classification label for the whole image, the predicted zone labels were combined in 
the following way: if all six zones are classified as Class 0 (Normal), the image is also assigned to 
Class 0. Otherwise, the image is assigned to the same class as a prevalent zone label. See the right 
box in Figure 10 for the algorithmic notation of this rule. 
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Figure 9 ROI coverage of the upper and middle zones of the left lung (A), and the middle and lower zones of the 

right lung (B). 

 

Figure 10 Label fusion algorithms: fusion of ROIs’ label to obtain a zone label in the left box, and fusion of zones’ 

labels to obtain an image label in the right box. 

4.3.3 Experiments and Results 

For practical considerations, images were downsized to the width 2048 pixels and an appropriate 
height to keep the same image aspect ratio. Pixel intensities in radiographs were normalized by 
histogram matching as described in Section 3.2. Radiographs from Wesley Medical Imaging and 
NIOSH B Reader Syllabus datasets were normalized, with radiographs from ILO Standard 
Radiographs serving as reference images.  

We conducted image classification using three different data labelling setups for training, as 
described in “Data labelling” section. As in our previous work, Leave One Out methodology was 
used: each training set is created by taking all the images except one, the test set being the image 
left out. A variety of well-known classifiers were employed in the ROI classification stage, to find 
the most successful ones. In the tables below the results obtained with the best performing Multi-
layer Perceptron (MLP) Classifier are presented for each data labelling setup.  

Alongside the performance measures for three-class classification, such as a confusion matrix, 
precision, recall, and F-score for each class (Tables 12 - 14), we also computed performance 
measures for binary classification (Table 15). To convert three-class classification results into binary 
classification results, we used the following rule: 

TN = X00 

TP = X11 + X22 + X21 + X12 

R0 - ROIs classified as Class 0, 
R1 - ROIs classified as Class 1, 
R2 - ROIs classified as Class 2, 
Lz – Assigned zone label  

if R0 >= R1 + R2: Lz = 0,  

else if R1 >= R2: Lz = 1, 

     else: Lz = 2 

Z0 - Zones assigned to Class 0, 
Z1 - Zones assigned to Class 1, 
Z2 - Zones assigned to Class 2, 

L  – Assigned image label  

if Z0 = 6: L = 0,  

else if Z1 >= Z2: L = 1, 

     else: L = 2 
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FN = X10 + X20 

FP = X01 + X02 

In this rule, Xij is the number of images belonging to Class i (true class) and classified as Class j 
(predicted class). 

Table 12 Three-class classification results for Setup 1 

 Class 0 Class 1 Class 2 

Predicted class 0 67 9 1 

Predicted class 1 5 11 3 

Predicted class 2 10 9 32 

Precision 0.870 0.579 0.627 

Recall  0.817 0.379 0.889 

F-score 0.843 0.458 0.736 

 

Table 13 Three-class classification results for Setup 2 

 Class 0 Class 1 Class 2 

Predicted class 0 65 12 0 

Predicted class 1 9 13 4 

Predicted class 2 8 8 28 

Precision 0.844 0.5 0.636 

Recall  0.793 0.394 0.875 

F-score 0.818 0.441 0.737 

 

 

Table 14 Three-class classification results for Setup 3 

 Class 0 Class 1 Class 2 

Predicted class 0 73 11 1 

Predicted class 1 4 11 2 

Predicted class 2 8 8 29 

Precision 0.859 0.647 0.644 

Recall  0.859 0.367 0.907 

F-score 0.859 0.468 0.753 

 

The F-score is the harmonic average of the precision and recall, and, when computed for the three 
different setups, it allows us to compare them among themselves. A F-score value ranges between 
0 (worst) and 1 (best). We prefer F-score to accuracy, as a performance metric, because we are 
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dealing with unbalanced classes, and the overall accuracy (for example, accuracy = 0.769 for Setup 
3) doesn’t reflect how badly the classifier performs for Class 1. From the results presented in 
Tables 12-14, we see that F-score is the highest for Setup 3 for each of the three classes. We can 
also see that correctly classifying radiographs belonging to Class 1 is the hardest (F-score is 0.468 
in Setup 3). We have also applied a χ2 test to the confusion matrices in Tables 12 - 14 and found 
that the confusion matrices for Setup 2 and Setup 3 are significantly different (p < 0.05).  

We converted the results above into binary classification results and computed the accuracy, 
sensitivity (recall), specificity, precision and F-score for each setup. Note that recall and sensitivity 
are the different names for the same measurement, true positive rate: TP / (TP + FN). Specificity 
measures the true negative rate: TN / (TN + FP), while precision measures positive predictive 
value: TP / (TP + FP). 

 

Table 15 Binary classification results 

 Setup 1 Setup 2 Setup 3 

Accuracy 0.830 0.801 0.836 

Sensitivity (recall) 0.846 0.815 0.806 

Specificity 0.817 0.793 0.859 

Precision 0.786 0.757 0.806 

F-score 0.815 0.785 0.806 

 

The results in Table 15 allow us to compare the performance metrics for the three setups. Although 
a χ2 test applied to binary confusion matrices did not show a statistically significant difference 
among them, the higher sensitivity (recall) and F-score for Setup 1 indicates that this is a preferred 
way of labelling data in the absence of a more representative dataset. Obviously, sensitivity is an 
important metric as a cost of misclassifying a positive (pneumoconiosis) image is higher than 
erroneously classifying a normal radiograph as one with abnormalities.  
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5 Deep Learning Based Automated Pneumoconiosis 
Detection 

Deep learning has become very popular and has been used pragmatically in many industry 
domains. However, one common barrier for deep learning to solve real-world problems remains 
the amount of labelled training data. In practice, imbalanced datasets often come up with majority 
of training data from a single class and a limited number of training samples from other classes. 
This can lead to biased prediction in favour of the majority class. 

In this section, we report our experimental results using various deep learning schemes for the 

detection of pneumoconiosis.  

5.1 Automated Pneumoconiosis Detection on Chest X-Rays Using 
Cascade Learning with Real and Synthetic Radiographs 

For pneumoconiosis detection, we had abundant training data for normal X-rays; however, the 

number of X-rays with features of pneumoconiosis was limited. To address this issue, we propose 

a cascade learning architecture for the automated pneumoconiosis detection. The following figure 

shows the proposed cascade learning architecture, which is further detailed in the following 

sections. 

 

 

Figure 11 The overall architecture of the proposed cascade learning model 

5.1.1 CycleGAN Image Generator 

CycleGAN was proposed to capture special characteristics of one image collection and translate 
the characteristics into the other image collection [16]. It can be used to do image-to-image 
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translation and leverage the imbalanced training datasets. In this work, we train a CycleGAN using 
our 56 normal and 56 pneumoconiosis images to generate 1,000 normal and 1,000 
pneumoconiosis images, respectively. Experiments show that overall good accuracy is achieved 
when using the synthetic images generated by CycleGAN trained for 30 epochs. 

5.1.2 CNN Based Image Classifier 

The input of our CNN based image classifier are images of 256 x 256 in dimension. The classifier is 
trained to classify an image into the category of either normal or pneumoconiosis. 

The CNN model is composed of 15 layers as shown in Figure 11. It includes 8 convolutional layers 
to extract feature maps. We start with 32 filters to extract low-level features, and double the 
number of filters to 64, then 128 and 256 to detect high-level detailed features. The kernel size 
used for these filters is 3 x 3 and stride is 1 x 1. The activation function used is ReLU. Four pooling 
layers are employed to down sample the feature maps and provide spatial variance. There are also 
three dense layers with all input nodes of each dense layer connected with all nodes of its next 
layer. Dropout is used in the first two dense layers to prevent overfitting. The last layer of the 
classifier uses sigmoid activation function and outputs a probability score for each class – normal 
and pneumoconiosis. 

For the classifier, its input is a chest X-ray image X and the output is a binary label  
representing the absence or presence of pneumoconiosis, respectively. During the training, we use 
binary cross-entropy as loss function, and RMSprop optimizer. We optimize the binary cross 
entropy loss: 

                (2) 

Where   is the binary cross loss,  is the true value (0 or 1 for binary classification) and  is 

the predicted probability of the label  , and N is the number of training samples. 

5.1.3 Image Augmentation 

All images including training, validation and testing samples are normalized so that their pixel 
values are between 0 and 1. For the training images, their mean is set to 0 by subtracting the 
mean value of the training dataset from each training image. Each training image is also divided by 
the standard deviation of the training dataset. To increase the diversity of the training dataset, the 
training images are randomly zoomed with a range of 0.9 to 1.1, and flipped horizontally, and their 
pixel intensities are sheared with an angle of 0.01 degrees. Apart from scaling the intensities to 
the range of [0, 1], no other augmentation was done for the validation and testing images. 

5.2 Automated Pneumoconiosis Detection on Chest X-Rays Using 
Transfer Learning with Local Texture Patches 

We have also considered a different approach to address the limited number of pneumoconiosis 

X-rays. In this approach, instead of generating new artificial images we parsed existing images into 

small regions of interest thereby increasing the number of available samples. The flow chart in 

Figure 8, Section 4.3, illustrates this classification model. The differences from the method 
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presented in Section 4.3 are in labelling of local patches, feature extraction and image classifiers 

used, and how the fusion of classification results is performed to obtain an image label.  

5.2.1 Data Labelling 

Local patches, or regions of interest (ROIs) were extracted from the lung periphery in a similar 

fashion as displayed in Figure 9, however, this time we have also considered larger and 

overlapping ROIs. The detailed settings will be described in Section 5.3. Since we indent to 

perform a binary classification of radiographs, each ROI has been labelled as Normal or 

Pneumoconiosis, in accordance with the label of a zone a ROI has been extracted from. For 147 

out of 153 radiographs in our dataset, zone labels were provided, and for the six remaining 

(abnormal) images we assumed that each zone was abnormal.  

5.2.2 Classifying Local Patches with DenseNet Image Classifier  

For each zone we have trained a separate DenseNet – a densely connected convolutional network 

[14], which is a popular deep learning architecture in computer vision and has been previously 

used with CheXNet [13] – a tool that successfully detects pneumonia in chest radiographs. For our 

purposes, we have slightly modified the 121-layer DenseNet architecture by replacing a multi-class 

prediction layer with a two-class prediction layer and a binary cross-entropy loss function (see Eq. 

(2)). The input of the classifier is a ROI – a small square image within a lung field. No custom 

features are extracted from it. The DenseNet classifier is initialized with pre-trained weights 

obtained with the popular ImageNet database [50], and further trained with ROIs extracted from 

our training radiographs. ROIs extracted from normal zones of radiographs with pneumoconiosis 

are not used. All ROIs are normalized so that their pixel values are set between 0 and 1, and, 

additionally, ROIs used for training, are flipped, to increase diversity in the dataset. The output of 

the classifier is a probability between 0 and 1 that a ROI has features of pneumoconiosis.  

5.2.3 Classifying Images 

It is expected that different ROIs from the same lung zone might receive a wide range of 

probabilities of having features of pneumoconiosis: firstly, there will be classification errors 

(especially considering we did not have true labels for each ROI to train the classifier), and, 

secondly, there are likely to be ROIs within a pneumoconiosis affected zone that do not have 

features of pneumoconiosis, and, vice versa, a normal zone could contains ROIs with features 

resembling pneumoconiosis. However, it is reasonable to assume that we see more ROIs with 

higher probabilities of pneumoconiosis in pneumoconiosis-affected zones, and, similarly, less ROIs 

with higher probabilities of pneumoconiosis in normal lung zones.  

Therefore, we derive a zone’s probability of having pneumoconiosis as a p-th percentile of its ROIs 

probabilities of having pneumoconiosis. Let’s denote a zone’s probability as Pz, where z is one of 

[1, 2, 3, 4, 5, 6]. To obtain an image probability of being normal or having pneumoconiosis, we 

need to further aggregate zonal scores into one result. To do so, we reason that an image has 

features of pneumoconiosis if any of the zones has features of pneumoconiosis. Thus, we multiply 

the probabilities that the zones are normal. If every zone has a high probability of being normal, 

the resulting probability of the image being normal is also high. If any zone has a high probability 
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of being abnormal (which is the same as a low probability of being normal), the resulting 

probability of the image being normal will diminish. Such an aggregator was suggested in [51] for 

the task of detecting chest radiographs with tuberculosis.   

The weighted probability of an image having features of pneumoconiosis is given by the following 

equation: 

𝑃 = 1 − ∏ (1 − 𝑤𝑧𝑃𝑧)6
𝑧=1       (3)  

where z is a zone number, and 𝑤𝑧 is a weight for each zone. We weigh each zone’s probability 

based on a classification performance for this zone. As an indicator of the zone classification 

performance, the Area Under ROC curve (AUC) is used. If AUC is below some threshold T, this zone 

is not considered, and if AUC = 1, it is fully taken into account. Therefore, 𝑤𝑧 is computed as 

follows: 

𝑤𝑧 = max (
𝐴𝑈𝐶𝑧−𝑇

1−𝑇
, 0)      (4) 

5.3 Experiments 

In this section, we report our experimental results using the proposed cascade learning model and 
compare the results from various popular machine learning models we have evaluated, including 
ROI-based transfer learning model described in Section 5.2.  

5.3.1 Experimental Setup 

Among the coal mine worker chest X-ray datasets we collected, there are an abundance of normal 

X-rays and only 71 pneumoconiosis images. We set aside 56 pneumoconiosis images (80%) for 

training and 15 images (20%) for testing as described in Section 4.2.2. To use the same number of 

images from different classes for training, we set aside 56 normal images for training and 26 for 

testing. The abundant X-ray images from NIH are used for ChexNet based transfer learning. More 

details can be found in the following sections. 

5.3.2 Experiments using CheXNet Based Transfer Learning 

CheXNet is developed by Stanford Machine Learning Group to detect pneumonia from chest X-

rays [13]. It is a 121-layer dense convolutional neural network trained on ChestX-ray14 image 

database, containing over 100,000 X-ray images with 14 diseases. In the experiments, we used a 

CheXNet model pre-trained with the ChestX-ray14 database as a starting point, and retrained it 

using 1,056 normal and 1,056 pneumoconiosis images, respectively. The 1,056 training images for 

each class include 1,000 synthetic images generated by CycleGAN and 56 real X-ray images. The 

CycleGAN was trained on the 56 normal and 56 pneumoconiosis images. The classification results 

for the testing dataset are demonstrated in Table 17. 
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5.3.3 Experiments with the Proposed Cascade Learning Model 

Experiment 1 – Using Both Lung Fields in a Single X-Ray Image  

To evaluate our proposed model, we used the same training and testing datasets as used for 

retraining the pre-trained CheXNet above. The testing dataset includes 41 images (26 normal and 

15 pneumoconiosis images), and the training dataset has 1,056 normal and 1,056 pneumoconiosis 

images. The 1,056 training images for each class include 1,000 images generated by CycleGAN and 

56 real X-rays. For each class, we split the 1,056 images into two datasets with 792 for training 

(75%), and 264 for validation (25%). The following figure shows the original lung mask (left) and 

CycleGAN generated image (right) for training. 

 

   

Figure 12 Training images - an original lung field X-ray image (left), and a CycleGAN generated X-ray image (right) 

Training of the Image Classifier 

For the training, we used the following hyper parameters: Learning Rate = 0.0001, Epochs = 20, 
Batch Size = 32. The dimension of the training images is 256 x 256. The training was conducted on 
a GPU workstation with an Intel 18-Core i9 2.6 GHz CPU, 128GB RAM, and 4 Titan Xp GPUs. The 
training for 20 epochs took only 6 minutes 52 seconds. During the training, the log-loss for the 
training images was between 0.058 and 0.691, and 0.058 at the end of the training; for the 
validation images it was between 0.029 and 0.691, and 0.052 at the end of the training. The 
classification accuracy for the training data was between 53.5% and 98.3%, and 98.3% at the end 
of the training; for the validation data it was between 50.2% and 99.6%, and 99.4% at the end of 
the training. The following figure shows the log-loss and accuracy during the training. 

Testing of the Image Classifier 

After the training, we tested our model with the test dataset. Only one pneumoconiosis X-ray 

image and 3 normal X-rays were misclassified. The overall classification accuracy is 90.24%, the 

sensitivity is 93.33% and the specificity is 88.46%. 
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Figure 13 Loss and accuracy during training and validation 

Experiment 2 – Using Left and Right Lung Fields Separately as Two Images 

We have also conducted experiments by splitting left and right lung fields of each X-ray image into 

two images as shown in the figure below: (a) is the original right lung field image, (b) is the original 

left lung field image, (c) is CycleGAN generated right lung field image, and (d) is CycleGAN 

generated left lung field image. 

       

(a) (b)                                   (c)                          (d) 

Figure 14 The original and CycleGAN generated images: (a) the original right lung filed image; (b) the original left 

lung filed image; (c) CycleGAN generated right lung filed image; and (d) CycleGAN generated left lung filed image  

 

The testing dataset includes 82 images (54 normal and 28 pneumoconiosis images), and the 

training dataset has 2,112 normal and 2,112 pneumoconiosis images, including 1,000 left and 

1,000 right synthetic lung images generated by CycleGAN and 112 real X-rays for normal and 

pneumoconiosis classes, respectively. For each class, we split the 2,112 images into two datasets 

with 1,584 for training (75%), and 528 for validation (25%).   

The same data augmentation methods are applied, and the same training parameters are used as 

in Experiment 1. Figure 15 and Figure 16 demonstrates the classification accuracies and losses for 
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training and validation datasets during the training for Experiment 2. The final experimental 

results are shown in Table 17 for comparison. 

 

 

Figure 15 Classification accuracies for training and validation datasets during the training for Experiment 2 

 

 

Figure 16 Losses for training and validation datasets during the training for Experiment 2 

5.3.4 Experiments using ROI-based Transfer Learning Model 

For these experiments, we extracted three types of ROIs from the lung periphery:  64 x 64 non-

overlapping ROIs, 64 x 64 overlapping ROIs and 96x96 overlapping ROIs. The overlapping ROIs had 
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50% of overlap in horizontal and vertical directions. For training, we used the following 

parameters: the batch size of 32, the number of epochs of 50, and the initial learning rate of 

0.001. The learning rate was reduced by 10% every time when the loss hit a plateau. Our best 

results were obtained with 64 x 64 overlapping ROIs. We selected the 75th percentile on ROIs’ 

probabilities to characterize a zone’s probability of being abnormal and computed the AUC for 

each lung zone using the same 41 test images as described in Section 5.3.1. The classification 

results per zone are presented in the following Table: 

Table 16 AUC values for each lung zone. The closer AUC is to 1, the better a classifier distinguishes between the two 

classes of data 

 RUZ RMZ RLZ LUZ LMZ LLZ 

Area Under Curve 0.94 0.90 0.85 0.86 0.93 0.91 

 

Applying Eq. 3 and 4, with threshold T = 0.8 given that all the zones had AUC values higher than 

0.8, the AUC = 0.92 is obtained for the test dataset. Figure 17 shows the corresponding ROC curve. 

By selecting an appropriate point on the curve that allows for the best sensitivity and specificity, 

we obtain 93.33% sensitivity, 80.77% specificity, and 85.37% overall accuracy.  

 

Figure 17 A ROC curve for the test dataset 

Comparison of the Classification Results from Different Machine Learning Model 

The table below compares the results from our models and other machine learning algorithms we 
evaluated. It clearly shows the proposed cascade learning model outperforms the others.  

Table 17 Comparison of pneumoconiosis detection results obtained from different machine learning models 

Method Sensitivity Specificity Overall Accuracy 

CheXNet Based Transfer 
Learning 

73.33% 80.77% 78.05% 
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Proposed Cascade 
Learning (Experiment 1) 

93.33% 88.46% 90.24% 

Proposed Cascade 
Learning (Experiment 2) 

90.74% 89.29% 90.24% 

ROI-based Learning 93.33% 80.77% 85.37% 
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6 Black Lung Prediction Demo 

In this section a web application is described that demonstrates our best performing automated 
pneumoconiosis prediction tool. This tool is utilizing the cascade learning approach described in 
Section 5 to predict whether a chest radiograph is normal or has features of pneumoconiosis. A 
user only needs a web browser to access this tool. We describe the implementation and web 
interface in the following subsections.  

6.1 Web Interface 

Black lung prediction demo can be found at http://confederate.csiro.au/. A page layout is 
straightforward as shown in Figure 18. Upon opening this web page, a user is presented with 
thumbnail images of 12 normal chest radiographs and 12 radiographs with pneumoconiosis. More 
images are revealed by clicking “Show more images” button. In total, 26 normal radiographs and 
15 radiographs with pneumoconiosis are available on the web page. These are the same test 
images as in Section 5.3.1, providing the user with an opportunity to validate our classification 
algorithm.  

 

Figure 18 A user is presented with a choice of test radiographs. 

Each small image is clickable: a larger view of a selected radiograph appears at the bottom of the 
page, where its classification process can be launched with “Predict” button as shown in Figure 19. 
After a few seconds, a prediction for the radiograph appears next to “Results:” label, together with 
the information whether it was a correct or incorrect prediction. Figure 20 andError! Reference 
source not found. Figure 21 demonstrate examples of correct and incorrect classification results. 

It is also possible to view a radiograph in its original resolution by clicking on the image. A new tab 
with the full-sized radiograph opens in the browser. Depending on a user’s screen size, they might 
need to manipulate a browser’s zoom function to enlarge the radiograph.  

Now, the web demo only operates on 41 pre-selected images, but we might implement an upload 
function in the future.  

http://confederate.csiro.au/
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Figure 19 A larger chest X-ray.  By clicking “Predict” button a user starts an image classification algorithm for the 

displayed image 

 

Figure 20 An example of correct prediction 

 

Figure 21 An example of incorrect prediction 
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6.2 Implementation 

In the back end we used a pre-trained deep learning model previously described in Section 5.1. 

The model and its best training weights were converted to a tensorflow.js model that we loaded 

into tensorflow.js - a JavaScript library for training and deployment of machine learning models in 

the browser. In this demo, we only used the algorithm to obtained predictions for test images, as 

the model had been already trained offline (Section 5.3.3). It only takes a few seconds to compute 

a prediction for the first image, and around one second per image for subsequent images, on an 

average PC. The demo runs in popular browsers such as Firefox, Chrome and Microsoft Edge (in 

Windows 10).  

 

https://www.tensorflow.org/js
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7 Summary and Discussion 

Pneumoconiosis is incurable, prevention is the key to management. Early detection of 

pneumoconiosis through routine health screening is critical to preventing progression of disease, 

and complications including chronic disablement and death. Until the present day, there has been 

a lack of systematic, automated, and objective systems for detecting the presence of 

pneumoconiosis and assessing its progression in individual coal miners other than by expert 

radiologists. The insensitivity of chest radiographs for the detection of early pneumoconiosis, the 

inter- and intra-reader variability in interpreting a chest X-ray, and the shortage of B-readers each 

contribute to difficulties in identifying these occupational diseases.  

We have developed a cascade machine learning algorithm which automatically detects 

pneumoconiosis from chest X-rays. This method employs a convolution neural network for image 

classification and utilizes a generative adversarial network to generate synthetic chest X-rays to 

train the image classifier. The proposed method outperforms others and achieves a sensitivity of 

93.33%, a specificity of 88.46% and an overall accuracy of 90.24%. We hope this technology can be 

potentially used for the pre-screening of occupational lung diseases, and to address the issues of 

variability in identifying pneumoconiosis, and the shortage of B-readers. The cascade learning 

model can be potentially used in other medical imaging applications when the training dataset is 

imbalanced or lacks diversity. 

To prepare the image data for training the machine learning models used in this study, we have 

developed and implemented algorithms for automated lung field and zone segmentation for both 

digitised analogue X-ray images and digital radiographs. The algorithms have been applied to the 

lung segmentation in the study. 

With the methods based on statistical image analysis, we focused our effort on employing local 

texture features, i.e. texture features extracted from relatively small local patches, to achieve 

global classification results. Such features are potentially very informative in characterising ill-

defined diffuse abnormal changes in a local textural appearance of the lungs and have been 

employed previously in published works, such as [47, 48, 49]. 

The datasets that were available to us contained so called weakly labelled data, meaning that the 

exact locations of abnormalities in training data were unknown. This is quite common since 

obtaining manual delineations of diffuse opacities is laborious and likely to produce unreliable 

ground truth. However, for most of our datasets zone-based ground truth was available, which 

allowed us to extend the true labels of zones to patches extracted from a corresponding zone. We 

limited the extraction of patches to a periphery of each zone in order to reduce the amount of 

overlap of different structures projected onto a 2D image of the chest. 

We used the features extracted from local patches and the true labels of these patches to train six 

classifiers. Each of these six classifiers is for the patches extracted from one of the six lung zones. 

Once the classifiers were trained, they could be applied to patches from a new (previously unseen) 

image to assign each patch a predicted class label. Next, we combined patch labels to obtain a 

zone label. Unless all zones were labelled as normal, the image was assigned to a class that had 
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most zone labels. We evaluated our results using a three-class data labelling setup, as well as 

within a binary classification setup, where we combined all abnormal classes into one. The latter 

allowed us to compare this local classification approach to the other two-class classification 

methods described in this report.  

With the classical machine learning based methods, we have investigated several approaches for 

the identification of pneumoconiosis on chest X-rays. The one-class classification is designed for 

imbalanced data in which one of the classes significantly outnumbers other classes. The real-world 

datasets are often predominately composed of normal examples with only a small portion of 

abnormal cases, like the normal X-rays vs pneumoconiosis X-rays. We have explored Autoencoder, 

SVM, Isolation Forest, Feed Forward Neural Networks and their hybrid models, and our 

experimental results show that the best sensitivity (93.33%) was observed when using Isolation 

Forest with raw chest X-ray images as input. Our experiments have also demonstrated that the 

best specificity (92.31%) and accuracy (73.17%) were obtained when using One-Class Support 

Vector Machines (OC-SVM) with raw chest X-ray images as input. 

We have also investigated classical machine learning based two-class classification to identify 

normal and pneumoconiosis X-rays. By mixing the X-ray image data acquired from multiple 

sources, we managed to get an equal number of training images from each class. Several machine 

learning models have been trained and compared, including SVM, Autoencoder, MLP, Perception, 

K-NN, Ridge Classifier, Random Forest and some of their hybrid models. To mitigate the shortage 

of pneumoconiosis X-ray images, transfer learning has been employed by using pre-trained 

machine learning models for deep feature extraction and using the deep features to train 

classifiers to detect the pneumoconiosis X-rays. Our experimental results show that the best 

sensitivity (93.33%) was observed when using the hybrid model of Autoencoder and SVM, 

however the specificity for this method was low. Our experiments also show that most cases of 

misclassification are between X-rays with ILO grades of 0 and 1.  

Both one-class and two-class classification schemes were explored with different classical machine 

learning methods. Comparing results with those obtained from the deep learning based methods, 

such as the proposed cascade learning and ROI-based transfer learning methods, revealed that the 

performance of the classical machine learning fell behind. 

We believe that a large digital dataset with well-represented pneumoconiosis categories will help 

improve our system significantly. This is especially essential for determining the ILO grade of a 

chest X-ray positive for pneumoconiosis, rather than simplify distinguishing whether a radiograph 

is negative or positive for pneumoconiosis. We understand that collecting such a dataset requires 

time and cooperation among different organizations as the prevalence of pneumoconiosis is 

assumed to be low in Australia. We have employed CycleGAN to generate synthetic X-ray images 

for training our machine learning models. The experimental results show that the combination of 

real and synthetic training data can significantly improve the performance of the machine learning 

models. 

It should be pointed out that there are some limitations with our proposed method. Although our 

cascade learning based model has achieved high sensitivity and accuracy in detecting 

pneumoconiosis, it has not been validated on a significant number of pneumoconiosis X-ray 

images. The system does not yet have functions to quantify the shape and size of opacities 

according to the ILO Classification System, which is standard information a B-reader is required to 
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report. While it is encouraging to observe the high sensitivity, specificity and overall classification 

accuracy in this study, this does not guarantee that our trained machine learning models can be 

successfully applied to any X-ray images acquired from any X-ray machines. These models have 

been trained with a mixture of digital radiographs and digitized films from various sources, but the 

test images used are not representative of all radiographs or X-ray machines.  Our machine 

learning models were trained and tested only with limited number of X-ray images. 
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