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Executive summary 

Pneumoconioses are preventable but incurable lung diseases caused by long-term inhalation of 

respirable dust such as coal, asbestos, and silica, and that from the inhalation of coal dust is more 

commonly known as black lung or Coal Workers’ Pneumoconiosis (CWP). In Queensland, Australia, 

there has been a resurgence of this disease in the last three years. About 70 cases of mine dust lung 

diseases have been diagnosed in Financial Year 2022 and a total of 328 cases have been reported 

since 1984 [1]. NSW Dust Disease Register Annual Report 2021-2022 shows that there are 476 

notifiable dust disease cases and 313 deaths [2]. Based on the data from National Health 

Commission of China, there were 15,898 new cases of pneumoconiosis reported in 2019 [3]. In the 

US, the prevalence of CWP among coal miners with 25 or more years of experience exceeds 10% in 

2017 [4] compared to 2.1% in 1990 [5]. The Sim review [6] shows that poor dust control is to blame 

for the re-emergence of pneumoconiosis in Queensland, and patchy medical screening has failed in 

the early detection of this potentially fatal disease. For pneumoconiosis screening, chest 

radiographs are acceptable, widely available and relatively inexpensive. The current practice in 

Australia is that coal miners are required to undergo pre-employment chest X-rays, followed by 

routine X-ray screenings after the employment, and each X-ray requires two B-readers to review. 

However, the insensitivity of chest radiographs for detection of early or moderate pneumoconiosis 

limits their efficacy in screening. This also leads to low sensitivity and specificity of chest X-rays when 

read by a radiologist who is qualified as a B-reader, especially for the detection of pneumoconiosis 

at an early stage of the disease. Inter- and intra-reader variability in chest radiography has been 

acknowledged ever since chest radiography was first used to identify and classify pneumoconiosis. 

To date, there has been a lack of systematic, automated, and objective systems for detecting the 

presence and assessing the progression of pneumoconiosis for individual coal miners other than by 

expert radiologists. 

With the advances in data storage and high performance computing technologies, deep learning 

has driven many artificial intelligence (AI) applications and services that are overwhelmingly 

successful, especially in image segmentation and classification. In the last five years, there have 

been lots of successful applications in medical imaging, such as CheXNet [7] for the detection of 

pneumonia from chest X-rays and CheXNeXt [8] for predicting diseases on X-ray images and 

producing heat maps to highlight lesions on X-ray images most indicative of each predicted disease. 

In collaboration with St Vincent’s Hospital at Sydney, and the University of New South Wales, this 

project aims at developing a deep learning-based automated pneumoconiosis detection and grading 

system based on the International Labour Organization (ILO) Classification guidelines. Extensive 

experiments have been conducted to test and validate the system in lab and also at a lung screening 

organisation via conducting a pilot study with previously unseen chest X-ray images. 

Based on the deep learning models proposed in this report, we have developed a web-based 

software tool for automated pneumoconiosis detection and classification, named AI-Xrayder. The 

software has been used in our pilot study at Lung Screen Australa Pty Ltd.   
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Curation of Chest X-ray Image Dataset for Pneumoconiosis 

We have collaborated with various organisations to collect chest X-ray images and associated ILO 

classifcations for the development of the automated pneumoconiosis detection and grading system. 

So far we have collected 1,842 chest X-ray images, including 1,182 ILO positive X-ray images and 660 

normal X-ray images. These images are collected from Resources Safety and Health Queensland 

(RSHQ), NSW Coal Services Health (CSH), Wesley Medical Imaging (WMI) in Queensland, St Vincent’s 

Hospital (SVH) in Sydney, Good Morning Hospital (GMH) in South Korea, International Labour 

Organization (ILO), and the latest NIOSH (The National Institute for Occupational Safety and Health, 

USA) B Reader study syllabus. 

For all chest X-ray images collected above, there is an ILO category associated with each X-ray. For 

all X-ray images from RSHQ and GMH, lung zone-based ILO categories of each image are annotated 

by B readers. For chest X-ray images from RSHQ, pneumoconiosis lesions are also outlined and 

labelled by a B reader. 

Apart from these images, we have also used some publicly available datasets to develop deep 

learning models in this project, such as CheXpert [11] containing 224,316 chest X-ray images curated 

by Stanford Maachine Learning Group, MIMIC-CXR [12, 13] including 377,110 images released by 

the Beth Israel Deaconess Medical Centre in Boston, ChestX-ray14 [14] including 112,120 X-ray 

images downloaded from National Institute of Health (NIH), Japanese Society of Radiological 

Technology (JSRT) dataset [15], Montgomery County X-ray Dataset and Shenzhen Hospital X-ray 

Dataset [16]. Some images from these datasets have been used for pre-training and testing our 

machine learning mdels.    

Deep Learning-Based Pneumoconiosis Detection 

Based on the investigation of different state-of-the-art deep learning methods, we have developed 

an innovative deep learning model for pneumoconiosis detection, named Masked Attention 

Convolutional Neural Networks (MA-CNN). By applying a mask attention constraint to the machine 

learning model, the proposed model is forced to learn image features from lung fields. Our 5-fold 

cross-validation results show that the proposed method can improve the pneumoconiosis detection 

accuracy, and we have achieved a sensitivity of 96.34%, a specificity of 98.52%, and an accuracy of 

98.65% on the experimental dataset. 

Lung segmentation is a crucial step in curating a training dataset for machine learning-based 

pneumoconiosis detection and classification. With the segmented lung field images, machine 

learning models can be trained to focus on the features inside the lung fields in a chest X-ray. 

However, we find that the most of state-of-the-art segmentation methods do not address the 

challenge of segmenting the lungs from chest X-ray images acquired at later stages of 

pneumoconiosis or when pneumoconiosis is accompanied by other diseases. Therefore, we have 

proposed and developed two new machine learning models, named BCL-UNet and MRUNet++, to 

solve the challenge of segmenting obscured or deformed lung fields. Our experimental results 

demonstrate the proposed method outperforms the state-of-the-art methods and can produce 

valid segmentation results from chest X-ray images even with obscured and deformed lung 

structures caused by severe diseases. 
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Deep Learning-Based Pneumoconiosis Classification 

To classify radiographs of pneumoconioses, we have also developed and compared different deep 

learning models to identify the best performing model for the chest X-ray classification of 

pneumoconioses. These include a novel multi-scale network structure, Multi-Scale CNN (MS-CNN), 

and a lung zone-based pneumoconiosis classifier. Experiments demonstarte that MS-CNN is capable 

of learning both discriminative detailed textures in high-resolution images and global features in 

multi-channel low resolution images, and outperforms CheXNet when comparing both models on a 

benchmark dataset. The experiments show that MS-CNN has achieved an average accuracy of 

85.04% in the X-ray classification of pneumoconioses, an average sensitivity of 95.73% and an 

average specificity of 93.97% in the detection of  pneumoconiosis.   

Pilot Study 

To validate our deep learning models using unseen X-ray images, a pilot study has been conducted 

to test AI-Xrayder at Lung Screen Australia Pty Ltd. A total of 209 chest X-ray images are used for the 

study, a sensitivity of 82.57%, a specificity of 90%, and an accuracy of 86.12% are achieved in the 

detection of pneumoconiosis. For the grading of chest X-ray images into ILO categories 0, 1, 2 and 

3, a classification accuracy of 74.64% is obtained.      

Limitations and Future Work 

Due to the low incidence of pneumoconiosis in Australia we were able to validate our tool only with 
a limited number of chest X-rays with pneumoconiosis, majority of them being grade 1. To make 
our tool more robust and suitable for clinical use, we will: 
  

• Continue to work with our collaborators on additional acquisition of chest X-rays with 

features of pneumoconiosis;  

• Further improve our deep learning models for detecting and grading pneumoconiosis into 

different categories of severity when more chest radiographs become available; and  

• Contnue the pilot study with Lung Screen Australia Pty Ltd to validate the pneumoconiosis 

detection and classification software tool, AI-Xrayder, and collect feedback to further 

improve functionality and performance of the tool.  
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1 Human Research Ethics Approval 

The study conducted in this project has been approved by the Human Research Ethics Committee 

of St Vincent’s Hospital with an expiry date of 15 August 2022 [9].  Also, we received an approval for 

this study from CSIRO Health and Medical Human Research Ethics Committee on 12 October 2016. 

The CSIRO approval has been extended to 30 June 2023 [10]. This will ensure that this research 

project will be covered. All research panels have deemed this a low/negligible risk project. 



 

2  |  CSIRO Australia’s National Science Agency 

2 Image Data Collection 

We have collaborated with various organisations to collect chest X-ray images and associated ILO 

classifications to be used in the development of the automated pneumoconiosis detection and 

grading system. In this chapter, we summarise the chest X-ray datasets collected since the 

commencement of this project and  during the Coal Services Health and Safety Trust Project 20647. 

We have collected new pneumoconiosis X-ray images from the following sources: 

• Good Morning Hospital (GMH) in South Korea – We have purchased 320 ILO positive digital 

X-ray images from GMH, which cover different ILO categories of pneumoconiosis. 

• Resources Safety and Health Queensland (RSHQ) – We have signed a data sharing agreement 

with RSHQ to supply CSIRO ILO positive X-ray images collected from Queensland coal miners. 

RSHQ has provided 694 ILO positive chest X-rays and their associated B-readers’ reports, and 

will provide CSIRO with more chest X-rays and associated reports as they become available 

to RSHQ.  

• The latest NIOSH (The National Institute for Occupational Safety and Health) B Reader study 

syllabus for classification of radiographies of pneumoconiosis. This new syllabus includes 135 

chest X-ray images covering different ILO categories. We have downloaded these images 

from the website of Centres for Disease Control and Prevention [17]. 

The X-ray images we collected during the project 20647 include those from: 

• International Labour Organization (ILO) - We have purchased a digital set of 22 ILO Standard 

Radiographs. This set is used in the ILO Classification System for Pneumoconiosis on Chest 

Radiographs. For this project, we have selected 17 chest radiographs out of the 22.  The 

selected images depict complete lung fields – either normal, or with small parenchymal 

abnormalities consistent with pneumoconiosis. 

• Wesley Medical Imaging (WMI) - We have collected 64 chest X-rays belonging to normal 

individuals, and 25 chest X-rays with small parenchymal opacities consistent with 

pneumoconiosis, which belong to 25 de-identified male individuals. 

• National Institute for Occupational Safety and Health (NIOSH) – We have downloaded the 

online B Reader Syllabus for preparing doctors to take the ILO Classification exam. 41 

teaching images from this resource were selected for our study, using the same criteria as 

for selecting ILO Standard Radiographs. 

• Coal Services Health (CSH) - We have acquired 511 chest X-ray images from CSH, including 

505 chest X-rays exhibiting no signs of pneumoconiosis, 5 chest X-rays classified as ILO 0/1 

that might have features consistent with pneumoconiosis, and one X-ray classified as ILO 

2/2. 

• St Vincent’s Hospital (SVH) at Sydney – We have collected 100 chest X-ray images from SVH. 

Among these images, 35 images belong to normal individuals, and the other images are from 
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the patients with various lung diseases. We only used the normal X-rays for training our 

machine learning models.  

The following table shows the numbers of new chest X-rays we collected since the commencement 

of this project in July 2020, and the chest X-ray images we collected during the project 20647. 

Table 2-1 Summary of chest X-ray image data collection 

Project Current Project (No. 20656) Project No. 20647 

Source GMH RSHQ NIOSH ILO NIOSH WMI CSH SVH 

Number 320 694 135 17 41 89 511 35 

Total 1,842 = 660 (Normal X-ray images) + 1,182 (ILO positive X-ray images)  

 

We have also used some publicly available datasets in this project to develop our machine learning-

based algorithms for segmentation and classification. These include: 

• Stanford Machine Learning Group – CheXpert is a large dataset of chest X-rays that contains 

224,316 chest radiographs of 65,240 patients [11]. 

• MIMIC Chest X-ray (MIMIC-CXR) database – The database contains 377,110 images 

corresponding to 227,835 radiographic studies performed at the Beth Israel Deaconess 

Medical Centre in Boston, MA [12, 13]. 

• National Institute of Health - We have downloaded the ChestX-ray14 dataset from National 

Institute of Health [14]. This dataset includes 112,120 X-ray images of more than 30,805 

unique patients collected from a hospital Picture Archiving and Communication System 

(PACS) with automatically text-mined image labels from their associated radiological reports. 

Among these X-ray images, 51,708 images contain one or more pathologies, and the 

remaining 60,412 images do not have any pathological findings. 

• Japanese Society of Radiological Technology (JSRT) – We have downloaded the JSRT 

database that contains 247 digitized chest X-rays with annotated lung masks [15]. 

• Montgomery County X-ray Dataset - This dataset contains 138 posterior-anterior X-rays 

acquired from the Department of Health and Human Services of Montgomery County, MD, 

USA [16]. Among the 138 X-rays, 80 X-rays are normal, and the rest are abnormal with 

manifestations of tuberculosis.  

• Shenzhen Hospital X-ray Dataset – This dataset has been collected by Shenzhen No. 3 

Hospital in Shenzhen, Guangdong providence, China [16]. The dataset contains 326 normal 

and 336 abnormal X-rays showing manifestations of tuberculosis.   
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3 Deep Learning Based Lung Segmentation 

Lung segmentation is a crucial step in curating a training dataset for machine learning based 

pneumoconiosis detection and classification. With the segmented lung field images, machine 

learning models can be trained to learn and focus on the features inside the lung fields in a chest X-

ray. 

Previously, we developed an automated lung segmentation method based on a deep learning 

network called UNet. In our last report we showed that the UNet-based method improved lung 

segmentation results compared to the previous state-of-the-art Pixel Classification approach. 

However, lungs with widespread or gross pathologies still present a significant challenge to 

automated methods for lung segmentation. Such pathologies are not uncommon for later stages of 

pneumoconiosis or when pneumoconiosis is accompanied by other diseases. In this chapter we 

present and discuss two proposed deep learning networks that improve segmentation of lung fields 

severely affected by pathologies.  

3.1  Proposed  BCL-UNet network  

Deep Neural Networks (DNN)-based methods, particularly UNet, are considered state-of-the-art for 

many medical imaging tasks. UNet is a convolutional neural network (CNN) initially developed by 

Ronneberger et al. [23]. The network consists of an encoding, or a contractive, path along with a 

symmetric decoding, or an expansive, path that gives a U-shape to the network, as shown in the 

original paper [23] and in our previous report. In the encoding path, feature maps with reduced 

resolution are extracted. The feature maps are then upsampled using deconvolutional layers in the 

decoding path. There are connections between the layers of equal feature map size (known as skip 

connections) from the encoding path to the decoding path, that provide important high-resolution 

features to the deconvolution layers.  

However, despite remarkable progress on segmenting the normal lung, performance of UNet is 

unsatisfactory on challenging chest X-ray (CXR) images [24]. In this study, we propose a DNN-based 

architecture that replaces the skip connections of UNet with a bidirectional convolutional-LSTM (BC-

LSTM) module that allows exchange of more information between the encoder and decoder paths 

and also captures spatiotemporal information. For further improvement, we add a multiple kernel 

pooling (MKP) block at the lowest level of UNet to encode more spatial information by different 

sized pooling operations. 

3.1.1  Overview of the BCL-UNet network  

Motivated by the success of Bidirectional Convolutional-LSTM (BC-LSTM) and Multi-Kernel Pooling 

(MKP) [18, 19, 20, 21], we combine these two blocks with UNet to develop a new framework for 

lung segmentation, named BCL-UNet. In the encoding path of UNet the dimensionality of feature 

maps is reduced, which causes loss of some spatial information that could be important for lung 

segmentation. The recent success of the BC-LSTM module (see Figure 3-1 (a)) on various image 
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related tasks motivated us to combine this module with UNet to preserve spatial information and 

exchange more information between the encoding and decoding paths.  

 

 

Convolutional LSTM module (C-LSTM) preserves spatiotemporal information using convolution 

operations [21].  An important part of C-LSTM is a memory cell that stores the unit state. The 

information in the memory cell can be accessed, updated and cleared by the input, output and 

forget gates, also known as controlling gates.  BC-LSTM uses two C-LSTMs to process the input data 

into forward and backward directions, which has shown improved prediction performance [18, 19]. 

A common way to encode contextual information in deep neural networks is by including pooling 

layers. Pooling aggregates statistics (min, max, average) of previously extracted features over a 

receptive field of a certain size. The standard pooling operation uses a single kernel of size 2 x 2. It 

has been shown that varying the size of receptive field used in pooling operations can improve the 

performance of image related problems such as detection, segmentation and classification [20]. 

Therefore, we propose to use two differently sized kernels, [2 x 2] and [4 x 4], to encode contextual 

information of different sizes. Figure 3-1(b) illustrates Multi-Kernel Pooling. Application of the 

kernels with different sizes creates feature maps of different sizes. Through upsampling we increase 

the dimension of the feature maps to match the feature maps of the original input. Finally, we 

concatenate upsampled feature maps with the input feature maps. A schematic visualization of our 

proposed framework that consists of three parts: UNet, BC-LSTM and MKP, is shown in Figure 3-2. 

 

 

 

 

 

 

162 x (2+512) 

4 x 4 Pooling   

2 x 2 Pooling   

1 x 1 Conv 
Upsample 

162 x 512  
tanh

C-LSTM

C-LSTM
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Yt-1

tanh

C-LSTM

C-LSTM

Xt

Yt

backward
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 htht-1

ht-1
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(a) (b) 

Figure 3-1 (a) Illustration of BC-LSTM module. It uses two convolutional LSTM (C-LSTM) modules with 

forward and backward paths. (b) Multi-Kernel Pooling (MKP) module. Information is encoded using two 

differently sized kernels. 
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Figure 3-2 Architecture of the proposed BCL-UNet module, that combines UNet with BC-LSTM and MKP modules 

 

3.1.2 Datasets  

For the evaluation of BCL-UNet network we use three public datasets, namely Shenzhen, 

Montgomery and Japanese Society of Radiological Technology (denoted SMJ collectively) described 

in Chapter 2. We combine these three datasets and randomly divide them into two subsets for 

training (80%) and testing (20%). The training set is further divided into two subsets for training 

(90%) and validation (10%). We use a five-fold cross validation scheme for all experiments. Lung 

regions of the SMJ dataset contain mild abnormal lesions and most of the images do not contain 

dense opacities or other severe abnormalities. To evaluate the effectiveness of the proposed 

technique, an independent, challenging test dataset with 100 images is used, including 50 

pneumoconiosis images from Good Morning Hospital, South Korea, denoted as  GMH dataset, which 

covers different ILO categories of pneumoconiosis, and another 50 images with Covid-19 disease 

from publicly available datasets (denoted Covid-19) [22]. We obtained the ground truth lung masks 

for the test images annotated by two radiologists from St Vincent's Hospital, Sydney. 

3.1.3  Evaluation Metrics 

For each image, we computed the Dice coefficient (DC) and Jaccard Index (JI) metrics to evaluate 

the overlap between the estimated lung mask and the ground truth. These are popular metrics for 

segmentation evaluation, computed as follows: 

             𝐷𝐶(𝐺, 𝑃) =  
2|𝑃𝐺|

|𝑃|+|𝐺|
                                                                                    (1) 

𝐽𝐼(𝐺, 𝑃) =  
|𝑃𝐺|

|𝑃|+|𝐺|−|𝑃𝐺|
                                                                              (2) 

where |G| is the number of pixels in the ground truth mask, |P| is the number of pixels in the 

estimated lung mask, and |PG| is the number of pixels in the overlap between the ground truth 

mask G and the estimated mask P. If the overlap between the ground truth and estimated masks is 

perfect, both DC and IJ would equal to one. 
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3.1.4   Experimental Setup 

We employed five-fold cross validation and computed the mean and standard deviation of the 

metric values as percentages (%). To train the UNet model, we  used Adam optimization algorithm 

with a learning rate of 4x10-4. 

For the hidden and output layers, we used ‘relu’ and ‘sigmoid’ activation functions, respectively. 

All X-ray images were resized to 512 x 512 before being used for training and testing. We used 

standard data augmentation techniques such as rotation, flipping and zooming on training images 

only. The model was trained for 50 epochs with the batch size of 8. 

3.1.5  Experimental Results 

In the first experiment we replaced the skip connections of the UNet model with a BC-LSTM block. 

The produced results are demonstrated in Table 3-1. The results show that the BC-LSTM block is 

effective for the lung segmentation, and can improve the segmentation performance. To improve 

the accuracy further, we added the MKP block at the lowest level of the UNet model. The results 

shown in Table 3-1 suggest that our proposed method outperforms the standard UNet model for all 

test datasets in terms of both DC and JI.  

Table 3-1 Lung segmentation performance on the four public and one private datasets using the proposed (UNet+ 

BC-LSTM+ MKP) and the standard UNet model. The best results are shown in bold 

 

 

 

 

 

 

 

 

 

 

To visualize the lung segmentation results, Figure 3-3 shows five CXR images from GMH, and Covid-

19 datasets, their corresponding annotated ground truth (GT), segmented lung fields using our 

proposed (Prop) and the standard UNet models. From this figure, qualitative performance 

difference can be observed between the proposed and the standard UNet-based models. Compared 

to the standard UNet model, our proposed method can segment lungs from CXR images more 

accurately, this is particularly true for the CXR images with complex structures caused by severe 

diseases, for example, the X-ray images in Columns  1 and 3. 

 

 

Database Methods DC (mean+-std. %) JI (mean+-std. %) 

SMJ 

UNet 0.9556±0.45 0.9150±0.81 

UNet+ BC-LSTM 0.9583±0.93 0.9203±1.69 

UNet+ BC-LSTM+ MKP 0.9604±0.46 0.9239±0.85 

GMH 

UNet 0.9116±1.48 0.8387±2.34 

UNet+ BC-LSTM 0.9246±0.67 0.8601±1.15 

UNet+ BC-LSTM+ MKP 0.9335±0.81 0.8754±1.42 

Covid-19 

UNet 0.9290±0.52 0.8676±0.88 

UNet+ BC-LSTM 0.9339±0.94 0.8762±1.63 

UNet+ BC-LSTM+ MKP 0.9431±0.20 0.8923±0.35 
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3.2 Overview of MRUNet++ network 

MRUNet++ have been developed to segment the lung fields in chest X-ray images with complex 

structures due to pneumoconiosis and other lung diseases. We will briefly introduce this network 

and then discuss its qualitative and quantitative results.  

CXR 

(a) 

  GT 

Prop 

UNet 

(b) (c) (d) (e) 

 

Figure 3-4 (a) Illustration of the i-th multi-scale residual (MR) block; (b) Architecture of the proposed MRUNet++ 

network for medical image segmentation. We replace the convolutional layers in the UNet++ architecture with the 

proposed MR blocks. 

 

Figure  3-4 (a) Illustration of the i-th multi-scale residual (MR) block; (b) Architecture of the proposed MRUNet++ 
network for medical image segmentation. We replace the convolutional layers in the UNet++ architecture with the 
proposed MR blocks. 

Figure 3-3 Qualitative comparison of the proposed method against the standard UNet model 

on five example CXR images (columns) from GMH and Covid-19 datasets 
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3.2.1 Overview of MRUNet++ network 

MRUNet++ is based on the UNet++ model. Zhou et al. [24] developed the UNet++ model to solve 

the two main problems of the standard UNet, which are: (1) the exact depth level for the optimal 

architecture, and (2) a restrictive fusion scheme that forces aggregation of the same level feature 

maps. UNet++ is constructed from UNet by replacing skip connections with densely connected skip 

connections. These connections allow flexible deep feature transmission along skip connections and 

feature fusion at decoder nodes. Another challenge of many deep learning networks is the vanishing 

or exploding gradient problem that hampers the training process [25]. He et al. [25] addressed this 

problem by introducing residual learning in a residual neural network (ResNet). A residual unit is a 

component of ResNet where the activation from a previous layer is added to the activation of a 

deeper layer in the network. There are many combinations of the convolution layer, batch 

normalization and activation function in a residual unit, details of which can be found in [25].  

In our proposed MRUNet++ network (Figure 3-4(b)) we replace the convolutional block of the 

UNet++ model with a multi-scale residual (MR) block which is depicted in Figure 3-4(a). Motivated 

by the success of  multi-scale residual block to recover high quality images [26], we use a similar 

backbone for MRUNet++.  The MR block consists of two-bypass networks which use different 

dilation rates (DR = 1 and DR = 2) and a convolution kernel of the same size [3 x 3]. To extract features 

at multiscale, the features between these bypass networks can be shared with each other.  The 

operation of the bypass networks can be defined by the following transformations: 

 

c1 = σ (ß ( 𝑤3𝑥3,𝐷𝑅=1
1 * xi + b1))                                                              (3)  

d1 = σ (ß ( 𝑤3𝑥3,𝐷𝑅=2
1 * xi + b1))                                                    (4)  

 c2 = σ (ß ( 𝑤3𝑥3,𝐷𝑅=1
2 * [c1, d1] + b2))                                          (5)  

d2 = σ (ß ( 𝑤3𝑥3,𝐷𝑅=2
2 * [d1, c1] + b2))                                          (6) 

e = ß (𝑤3𝑥3,𝐷=1
3 * [c2, d2] + b3)                                                    (7) 

   

where σ(.) and ß(.) denotes the the activation function and batch normalisation function, 
respectively. Similarly, xi , w and b represent input of the i-th MR unit, the weights and biases, 
respectively. The superscripts of w represent the number of the layers at which they are located, 
the subscripts of w represent the convolution filter size [3 x 3] and dilation rate, and [ , ] represents 
the concatenation operation. 

A Squeeze-and-Excitation (SE) unit is inserted to focus more on relevant features as follows: 

ƒ(xi) = Ɛ(e)                                                                            (8) 

where ƒ(.) represents the residual learning function that performs a nonlinear transformation with 
a series of operations, and Ɛ(.) denotes SE function. Finally, to increase the gradient flow, residual 
connection is adopted for each block.  

Finally, each MR can be defined in the following way:  

xi+1 = σ(ƒ(xi)+xi)                                                                      (9) 

where xi and xi+1 represent the input and output of the i-th MR block. The operation ƒ(xi) + xi is 

performed using elementwise addition.  
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3.2.2 Datasets 

In this study, for the MRUNet++ model we use the two publicly available datasets described in 

Chapter 2, namely, Montgomery and Japanese Society of Radiological Technology, denoted 

collectively as MJ, for developing the machne learning model for lung segmentation. We use these 

two datasets because they come with ground truth lung masks for training and evaluation of the 

automated segmentation methods. The MJ datset is randomly divided into two subsets for training 

(80%) and testing (20%). The training set is further divided into two subsets for training (85%) and 

validation (15%).  

Most of the abnormal chest X-rays of MJ dataset do not contain very dense opacities or other severe 

abnormalities in the lungs. To assess the effectiveness of the proposed methods for the lungs with 

a variable degree of pathology, an independent test dataset was used for evaluating the 

segmentation performance of the model trained on the MJ dataset. We selected 200 

pneumoconiosis images with complex structure from the GMH dataset described in Chapter 2. This 

dataset covered different ILO categories of pneumoconiosis. Another 50 test images with Covid-19 

disease were picked from publicly available datasets (denoted Covid-19) [22].  We obtained the 

ground truth lung masks for the test images annotated by two radiologists from St Vincent's 

Hospital, Sydney. 

3.2.3 Experimental Setup 

Our proposed network was trained and tested in a five-fold cross-validation manner.  It means, that 

MJ dataset was divided into 5 non-overlapping subsets (folds), with 20% of data in each, and for 

each fold the rest of the dataset was used for training a network, and the fold was used for testing. 

For each fold, a trained network was also tested on 200 images from the GMH dataset.  

3.2.4 Experimental Results for MRUNet++ network 

Table 3-2 Comparative evaluation between the proposed MRUNet++ network and other state-of-the-art networks 

for lung segmentation measured by Dice Coefficient (DC) and Jaccard Index (JI) on the four datasets.  The mean and 

standard deviation for each metric measured over five folds. 

 

 

Method 
MJ GMH   COVID-19 

DC JI DC JI DC JI 

U-Net  0.9546±1.93 0.9214±2.88 0.8475±2.38 0.7479±3.39 0.9140±0.98 0.8510±1.35 

UNet++  0.9543±2.76 0.9248±3.62 0.8610±1.59 0.7650±2.21 0.9291±0.56 0.8718±0.86 

AttentionUNet 0.9570±2.08 0.9257±2.82 0.8524±1.83 0.7512±2.65 0.9284±0.27 0.8699±0.48 

ResUNet++  0.9655±1.04 0.9367±1.60 0.8598±2.45 0.7679±3.58 0.9317±0.40 0.8765±0.55 

MultiResUNet  0.9617±1.93 0.9332±2.77 0.8224±2.45 0.7149±3.35 0.9235±0.89 0.8625±1.43 

DCUNet  0.9570±2.69 0.9288±3.40 0.8303±0.74 0.7221±1.24 0.9256±0.99  0.8666±1.56 

MRUNet++ 
(Proposed) 

0.9642±1.33 0.9345±2.15 0.8778±1.92 0.7893±2.98 0.9342±0.64 0.8797±1.05 
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Quantitative comparison between the proposed MRUNet++ model and other state-of-the-art 

networks on test datasets is shown in Figure 3-5. The results for each network are averaged over 

the five folds. The results suggest that for MJ dataset the performance is comparable for all 

architectures. However, for COVID-19 and pneumoconiosis CXR images from the GMH dataset, our 

proposed method outperforms all other networks.   

To visualize the lung segmentation results, Figure 3-5 shows two challenging chest X-rays from the 

GMH and COVID-19 datasets, their corresponding annotated ground truth, segmented lung fields 

using the proposed and other models. In this figure qualitative performance differences can be 

observed between the proposed and other models. Compared to all other models, our proposed 

MRUNet++ can segment lungs from these chest X-rays more accurately, while other methods suffer 

from obscured and deformed lung structures caused by severe diseases  

 

3.3 Summary 

We have developed and implemented the two UNet-based deep learning networks, BCL-UNet  and 

MRUNet++, and experimentally validated them on the lung segmentation task. The proposed two 

methods outperformed the state-of-the-art lung segmentation methods on a challenging 

pneumoconiosis dataset, and showed a comparable performance on a less challenging dataset that 

included normal images and abnormal chest X-rays without severe signs of pathology. 

We have also compared the performance of MRUNet++ with the BCL-UNet network. For images 

with normal or mild disease conditions, the BCL-UNet network outperforms MRUNet++; however, 

for images with severe disease conditions MRUNet++ performs better than the BCL-UNet network. 

For MJ and COVID-19 datasets, the dice scores using the BCL-UNet network are 0.9716 and 0.9439, 

respectively; whereas, for the MRUNet++ network the scores are 0.9642 and 0.9342. However, for 

the GMH dataset, the dice scores for MRUNet++ and BCL-UNet are 0.8778 and 0.8445, respectively. 

Using MRUNet++ or BCL-UNet for lung segmentation as the first step of automated detection of 

pneumoconiosis not only enables more accurate segmentation of pathological lungs but also 

assures that fewer images get rejected at this stage because of a failed lung segmentation.  

 
  

 

 
Figure 3-5 Qualitative comparison of the proposed methods against the against other state-of-the-art 

networks on two difficult chest X-ray images from GMH and COVID-19. 

 

Figure 3-5 Qualitative comparison of the proposed method against the other state-of-the-art networks on 

two difficult chest X-ray images from GMH and COVID-19. 
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4 Deep Learning-Based Pneumoconiosis Detection 

We have continuously made efforts to improve the accuracy of pheumoconiosis detection by 

exploring state-of-the-art machine learning methods. Aiming at high detection accuracy, we have 

developed a Masked Attention CNN (Convolutional Neural Network), and introduced Multiple 

Instance Learning (MIL) to retain the original radiograph resolution and image details in machine 

learning for the pheumoconiosis detection. In this chapter, we report these methods, datasets used, 

experimental results and findings. 

4.1 The Masked Attention CNN for Pneumoconiosis Detection 

Traditionally, radiologists determine pneumoconiosis based on the similarity between a chest 

radiograph to be classified and the standard ILO chest radiographs in terms of image features of 

lesions. The image features of lesions in the pneumoconiosis chest radiograph mainly include small 

opaque proliferation, size and shape, small opacity aggregation into larger opacities, and pleural 

plaques in the lung field. Figure 4-1 shows the difference between normal and pneumoconiosis 

chest X-rays. 

4.1.1 Method 

We used the EfficientNet-b0 as the baseline to train a two-class classification model (normal vs. 

pneumoconiosis). The EfficientNet [27, 28] is a novel deep learning model with a scaling method 

that uniformly scales up all dimensions of depth, width, and resolution of Convolutional Neural 

Networks (CNNs) using a simple yet highly effective compound coefficient. Unlike conventional 

practice that arbitrarily scales these factors, the EfficientNet can uniformly scale the network width, 

depth, and resolution with a set of fixed scaling coefficients. EfficientNet has so far outperformed 

most general image classification models in both classification accuracy and efficiency. Figure 4-2 

shows the EfficientNet architecture. 

Understanding how a machine learning model makes a decision is important in the era of deep 

learning, and the GradCAM [29] is one of methods to visualize the outcome produced by the model. 

The method can be used to highlight the portion of image responsible for the model’s decision. 

However, the machine learning model we trained does not always make decisions based on the 

features in lung fields. Figure 4-34-3 shows some example activiation maps which spread over the 

whole X-ray image, including the non-lung-field background masked as black regions in the top row 

images. Because the opacity only appears in the lung fields, the activation on the background 

doesn’t make sense and means that the CNN is overfitting to the irrelevant image features such as 

the lung shape and heart size etc. 
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Figure 4-1 Samples of the pneumoconiosis dataset: (a) normal cases without pneumoconiosis; and (b) cases with 

pneumoconiosis 
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Figure 4-2 The EfficientNet architecture [35] 

 

 

Figure 4-3 The activation map from CNN to the masked radiographs. Red region means higher activation from the 

CNN. 

To address this problem, we proposed the Masked Attention CNN (MA-CNN). The workflow of the 

proposed method is illustrated in Figure 4-4. As the first step, we use the segmentation model 

described in Chapter 3 to generate the lung field masks of the input images. The input images are 

then masked, cropped, and reshaped to 448 x 448 using the lung field mask. The masked images are 

then fed into the CNN which produces k output activation maps (k is the number of classes, in our 

case, k = 2). The activation maps are masked with the lung-field masks to produce the masked 

attention maps. We use the categorization attention maps, and the masked attention maps to 

calculate the Attention Map Loss (𝐿𝑜𝑠𝑠𝑎𝑚). The 𝐿𝑜𝑠𝑠𝑎𝑚 is the mean square loss between two same-

sized attention maps (Att1 and Att2), which is defined as: 

𝐿𝑜𝑠𝑠𝑎𝑚(Att1, Att2) = ∑ (Att1𝑖,𝑗,𝑘, Att2𝑖,𝑗,𝑘)
2𝑐,ℎ,𝑤

𝑖,𝑗,𝑘 /𝑐/𝑤/ℎ   (1) 

where c, w, h are the channel number, width and height of the attention maps. In the other aspect, 

the square root of categorisation activation maps are normalized using L2 norm and classified using 

the 𝐿𝑜𝑠𝑠𝑐𝑙𝑠, which is the typical cross-entropy classification loss between the output class scores 

and the one-hot class label. The final loss function can be depicted as follows: 

Loss = 𝐿𝑜𝑠𝑠𝑎𝑚 + 𝐿𝑜𝑠𝑠𝑐𝑙𝑠        (2) 
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The final loss function combined the constraint from the one-hot class label and the factor that the 

activation of the CNN should be concentrated on the lung field. Our experiments illustrated the 

effectiveness of the Masked Attention CNN structure.  

 

Figure 4-4 The workflow of the proposed masked CNN for black lung detection. The input image is masked using the 

segmentation method described in Chapter 3, and the output attention maps are masked to produce attention 

supervision with the attention map loss 𝑳𝒐𝒔𝒔𝒂𝒎, which is added to the class loss 𝑳𝒐𝒔𝒔𝒄𝒍𝒔 to generate the final loss. 

4.1.2 Experimental setup 

We conducted experiments using the pneumoconiosis dataset described in Chapter 2, including 609 

normal images and 683 pneumoconiosis images. We masked the images using the segmentation 

method described in Chapter 3, cropped the images using the outer bounding boxes of the lung 

masks, and reshaped them to the resolution of 512 × 512. To cross validate the experimental results, 

we randomly split the dataset into five folds and used four folds for training and one fold for testing 

for each experiment. 

All experiments areimplemented in Python using the PyTorch platform for machine learning [30]. 

We use the ”RandomResizedCrop” function of PyTorch to augment all input images to the resolution 

of 448 × 448 for training. For testing, we resize the input image to 512 × 512 and center crop the 

image to 448 × 448. The training batch size is 8, and the weight of decay is 0.00001. For all layers of 

the proposed machine learning model, the initial learning rate is 0.01. We conducted testing at the 

end of each training epoch. If the testing accuracy does not increase for seven epochs, we reduce 

the learning rate by a factor of ten. If the learning rate is lower than 0.00001, we terminate the 

training process. 

The evaluation metrics used in the study include the classification accuracy, sensitivity, specificity, 

and F1-Score as defined below: 

𝐴𝑐𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
       (3) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
      (4) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                  (5) 
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𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ×𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑡𝑦

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 +𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑡𝑦
    (6) 

where TN, TP, FP, and FN stand for True Negative, True Positive, False Positive, and False Negative, 

respectively.  

4.1.3 Results 

The following table shows the results produced by the proposed MA-CNN and the baseline CNN. 

The last two rows show the average improvement and the standard deviation of the improvement. 

The MA-CNN outperformed 0.13 ± 0.55%, 0.51 ± 1.14%, 0.45 ± 1.00%, and 0.30 ± 0.27% over the 

baseline CNN structure on Sensitivity, Specificity, Accuracy, and F1-Score for the five-fold cross 

validation. 

Table 4-1 Comparison of experimental results produced by the proposed MA-CNN and the baseline CNN. The 

improvement row shows the changes the MA-CNN made over the baseline CNN. StanDev is the standard deviation 

of the improvements on the five folds. 

  TP TN FP FN Sensitivity Specificity Accuracy F1-Score 

CNN 

Fold-1 133 120 1 5 96.38% 99.17% 99.25% 97.79% 

Fold-2 124 113 6 4 96.88% 94.96% 95.38% 96.12% 

Fold-3 127 133 0 8 94.07% 100.00% 100.00% 96.95% 

Fold-4 133 111 4 3 97.79% 96.52% 97.08% 97.44% 

Fold-5 140 120 1 6 95.89% 99.17% 99.29% 97.56% 

SUM 657 597 12 26 96.19% 98.03% 98.21% 97.19% 

MA-

CNN 

Fold-1 134 120 1 4 97.10% 99.17% 99.26% 98.17% 

Fold-2 123 116 3 5 96.09% 97.48% 97.62% 96.85% 

Fold-3 127 133 0 8 94.07% 100.00% 100.00% 96.95% 

Fold-4 133 112 3 3 97.79% 97.39% 97.79% 97.79% 

Fold-5 141 119 2 5 96.58% 98.35% 98.60% 97.58% 

SUM 658 600 9 25 96.34% 98.52% 98.65% 97.48% 

Improvement +1 +3 -3 -1 0.13% 0.51% 0.45% 0.30% 

StanDev ±0.75 ±1.36 ±1.36 ±0.75 ±0.55% ±1.14% ±1.00% ±0.27% 

 

We visualized the output attention maps of the proposed MA-CNN, and compared them with the 
output of the baseline CNN to verify the effectiveness of the mask attention constraint we proposed 
and applied to the machine learning model. Figure 4-5Figure 4-5 shows that the activation of the 
baseline CNN model concentrates more on the image background regions and is sparser than that 
of the proposed MA-CNN. The visual comparison between the activation maps produced by the 
baseline CNN model and the proposed metwork shows that the irrelevant activation has been 
suppressed using the proposed MA-CNN, and the activation of the proposed model is more focused 
on the lung fields.  

Differently from the traditional methods that directly apply CNN to pneumoconiosis detection, the 
MA-CNN customises the CNN training phase by designing the constraint to force the CNN to learn 
from features from lung fields instead of the image background, lung shape, heart size, or any other 
irrelevant features. The experimental results show steady improvement in both the detection 
accuracy and network activation. 
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Figure 4-5 Visualization and comparison of the activation maps from the baseline CNN and the proposed MA-CNN. 

The Image column shows example original input images. The CNN column and MA-CNN column illustrate the 

activation maps from the baseline CNN and MA-CNN, respectively. 

4.2 Multiple Instance Learning for Pneumoconiosis Detection 

We also investigated Attention-based Multiple Instance Learning (A-MIL) [31] to evaluate its 
effectiveness for pneumoconiosis detection. With this method, each chest X-ray image needs to be 
split into small square image patches (instances) to make a bag of patches for the whole image. This 
bag of image patches acts as a batch in the training and testing phases. Firstly, the A-MIL 
architecture makes bags of input images by splitting each image into small patches. Then, the 
patches are passed to the feature extractor of the A-MIL model, which consists of a convolutional 
neural network block and several fully connected layers. Then, the instance-level features are 
passed to the classifier to get the instance-level attention weights. The attention weights are  further 
used for attention aggregation to get the bag-level features. We apply a fully connected layer for 
the final classification of a chest X-ray into either the pneumoconiosis or normal class. The workflow 
of the A-MIL in our experiments is illustrated in Figure 4-6. 
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Figure 4-6 The framework of the A-MIL model. 

4.2.1 Multiple Instance Learning (MIL) 

Multiple Instance Learning (MIL) [32] provides the solution for a weakly supervised learning 
problem. In MIL, the task is to predict a classification label of a bag, which consists of multiple 
instances. If 𝒟 = {X1, X2, … , Xn}, where X𝑖 ’s are the bags in dataset 𝒟, and one bag contains 𝓂 
instances, i.e., X𝑖 = {𝑖1, 𝑖2, … , 𝑖n} where 𝑖𝑗 is 𝑗-th instance with a binary label y𝑖  in a bag X𝑖.  

The most critical part of MIL is the instance-level pooling. Instance level pooling aggregates instance 
level features to obtain bag level features. The most popular instance pooling operations in MIL are 
the mean pooling and max pooling. Mean pooling operations average over all the instances to 
predict the bag label, whereas max pooling operations take the maximally activated instance label 
as the bag label. Both max pooling and mean pooling have their disadvantages. Max pooling only 
accounts for the maximum activation, which may be an outcome of an outlier. On the other hand, 
mean pooling weighs every instance equally, thus losing the information from the sparsely 
populated classes. In the method we selected, instance-level features h1, h2, h3, . . , hm are pooled 
by taking their weighted average as shown in Equation 7 [31]. The coefficients of weighted average 
pooling are learned using a two-layer neural network with softmax activation.  

The expression for attention computation is given in Equation 8. 
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z = ∑ 𝑎𝑝ℎ𝑝
𝑚
𝑝=1 ,      (7) 

where, 

ap =
exp {𝑤𝑇tanh (𝑉ℎ𝑝

𝑇)}

∑ exp {𝑤𝑇 tanh(𝑉ℎ𝑗
𝑇)}𝑚

𝑗=1

    (8) 

and w ∈ ℛl×1and V ∈ ℛl×m. In the above equation l is the number of instance-level features and 
ap is the attention weight learned by the model.  

4.2.2 Bag Preparation 

We cropped each chest X-ray image with the resolution of 1,120 × 1,120 in the pneumoconiosis 

dataset into 28 × 28 patches with stride 28. This resulted in 1,600 patches which are packed into a 
single bag for each of X-ray images in the dataset. 

4.2.3 A-MIL framework 

The overall pipeline of the A-MIL framework is shown in Figure 4-6, which is inspired by [31]. Each 
patch in a bag is processed through a feature extractor to get instance-level features. The dense 
layer extracts 500 features from each instance. The attention computation block computes the 
attention score using these 500 features of each instance. These attention weights are further used 
for attention aggregation to get the bag-level features. A-MIL allows different weights for different 
instances in a bag. The attention aggregation computation makes the bag highly informative for the 
bag-level classifier. The detailed architecture of the instance-level feature extractor used in A-MIL is 
illustrated in the following table.  

 

Table 4-2 Feature extractor used in A-MIL 

 

 

4.2.4 Experiments 

We conducted experiments using the same pneumoconiosis dataset as described in Section 4.1.2, 
which contained 609 normal images and 683 pneumoconiosis images. Each of the images was first 
segmented using the method described in Chapter 3, then cropped using the outer bounding boxes 
of the mask, and then reshaped to the resolution of 1,120 × 1,120. All of the images have one-hot 
class annotation only. We randomly split the dataset into 80% for training and 20% for testing. The 
A-MIL framework was trained with a batch size of 1, the learning rate of 0.001, and the binary cross-
entropy as the loss function. We used data augmentation such as vertical and horizontal flip, 
rotation by 90◦, 180◦, and 270◦. All experiments were conducted using PyTorch platform in Python.  
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The initial experiments show that the classification accuracy is 82.5% which is lower than the 
accuracy of 97.6% obtained from the MA-CNN model. We will continuously investigate A-MIL model 
to improve its performance.  

4.3 Summary 

We have investigated the state-of-the-art machine learning methods such as the Attention Multiple 

Instance Learning, and proposed the MA-CNN for pneumoconiosis detection using segmented lung 

images. 

With the proposed MA-CNN, our five-fold cross validation experiments show that the proposed 

machine learning model has improved pneumoconiosis detection performance. We have achieved 

a sensitivity of 96.34%, a specificity of 98.52%, an accuracy of 98.65%, and a F1-score of 97.48%. 

Visualisation of the activation maps shows the proposed MA-CNN model is focused on learning 

discriminative features in the lung fields, instead of the background or other regions. It should be 

pointed out that our experiments were conducted with the limited number of normal and 

pneumoconiosis images, so the robustness of the proposed MA-CNN model needs to be further 

evaluated with larger datasets. Future work in this area will include combination of the classification 

network with the localization of opacity, this will be used to classify a chest X-ray into a specific ILO 

category.  

The Attention Multiple Instance Learning (A-MIL) model can effectively utilize chest X-ray images 

with their original resolutions, hence, detailed features of pneumoconiosis lesions can be learnt. 

Different from the original deep learning-based classification models, which have to take the 

downsampled X-ray images as input, leading to loss of some of image details, the A-MIL-based CNN 

model retains the original image resolution and classifies a chest X-ray image based on the lossless 

features in the image. We have investigated the A-MIL model and conducted some initial 

experiments for the detection of pneumoconiosis. The initial experimental results show that the 

detection accuracy is promising although it is lower than that of the proposed MA-CNN model. 

Future works to improve the A-MIL model may include: 

1) Finetuning the training parameters for the A-MIL model, such as patch resolution, model depth, 

feature dimension, and data argumentation methods. 

2) Improving the A-MIL model to accommodate flexible bag sizes – our initial experimental results 

show that this can further improve the detection accuracy. By removing patches without lung 

tissue in the bag of a chest X-ray image, the bag size, i.e. number of patches in the bag, will be 

reduced. Because the number of patches with lung tissue in different chest X-rays can be 

different, the bag sizes of images can be different. Another scenario is that the resolutions of 

chest X-ray images can be different because they may be acquired using different X-ray machines 

and with different settings. This will also result in different bag sizes. To develop the improved A-

MIL model, patch level annotations in the training dataset are required. 

3) Combining the bag level one-hot class annotation and the patch-wise annotation – this may 

enforce the A-MIL model to learn features of the pneumoconiosis lesions from pathology 

patches, and therefore improve the detection accuracy. 
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5 Deep Learning-Based Classification of Radiographs 
of Pneumoconioses Using Chest Radiograph Zones 

Limited computing resources at pneumoconiosis screening sites make it impractical to develop and 

apply a deep learning-based model that works on the whole high-resolution CXR images. Soluitons 

include either reducing the capacity of the model (e.g., shallow learning) or down-sampling the 

images. However, pneumoconiosis diagnosis highly depends on subtle image features, therefore 

compromising the feature richness by model simplification or reduction of the image resolution is 

not desirable. In this project we developed a method that solves the problem by dividing the lung 

fields into six zones, classifying each zone separately and aggregating zone classification results into 

an image classification score. This chapter describes datasets, experimental setup for zone-based 

classification and our results. 

5.1 Datasets 

We used the chest X-rays with four different ILO catagories from the six datasets described in 

Chapter 2. given in the Table 6-1. We combined all these datasets to train and evaluate the model. 

The number of images with ILO category 0 is 632, and whereas only 61 images belong to category 

3. The number of images for category 1 and 2 are 494 and 174, respectively. Only GMH and RSHQ 

datasets contains images with zone label . For other datasets, we assigned image label to the each 

of the zone label. For example, if a image belong to category 1 then all zones also belongs to catgory 

1. Some images contains both small and large opacities. 

Table 5-1 Datasets used in this study 

5.2 Experimental setup 

All experiments were conducted using Keras with TensorFlow as backend. All models were trained 

using the Adam optimizer with a learning rate of 0.0001, the number of epochs 120, batch size of 4, 

and categorical_crossentropy loss function. Five-fold cross-validation approach have been used to 

 

Database 

ILO category  

Total 0 1 2 3 

GMH 13 119 138 47 317 

Syllabus_19 15 31 14 9 69 

WMI 64 15 7 1 87 

RSHQ 0 329 15 4 348 

CSH 505 0 0 0 505 

StVincent 35 0 0 0 35 

Total 632 494 174 61 1361 
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evaluate the performance of our model. Average height and width information of all zones used in 

this experiment is presented in Table 5-2. We resized all the zones based on average height and 

width information to keep the same aspect ratio. We have used two different heights, 256 and 512, 

for all zones, the corresponding width have been selected using the aspect ratio metioned in Table 

5-2.  

Table 5-2 Average height and width information of all zones used in the experiment 

 

 

 

 

 

 

 

Figure 5-1 demonstrates the architecture of our proposed zone-based classifier using a deep 

learning model. Firstly, we segmented the lung fields from the CXR images using UNetRes++ model 

described in Chapter 3. To segment the lungs we fed the downsized images to the model, and then 

upsized the resulting mask images to the original image size. After segmentation, each lung field 

was divided into three zones by dividing the vertical distance between the lung apex and the dome 

of the diaphragm into three equal parts and drawing a horizontal line at each division point. For an 

easy reference, the algorithm assigns each zone a label, which are Right Upper Zone (RUZ), Right 

Middle Zone (RMZ), Right Lower Zone (RLZ), Left Upper Zone (LUZ), Left Middle Zone (LMZ), and Left 

Lower Zone (LLZ). 

 

Figure 5-1 Overview of the CNN-based model for BL classification using zone labels 

Six zone classifiers were trained to classify each zone of a X-ray image into an ILO category, such as 

a RUZ classifier. We used three CNN-based models, namely, ResNet152 [33],  InceptionResNetV2 

[34], and Xception [35] models to classify the profusion level of small opacities for each zone. All of 

these models were pre-trained on the ImageNet dataset [36]. We initialized the models with pre-

trained weights and then finetuned the models using our training data. Each zone was classified as 

category 0, 1, 2, or 3. To obtain a classification label for the whole image, the predicted zone labels 

were combined in the following way: the highest category of the six zones determines the ILO 

category of the whole image. For example, if the six zones of an image are predicted as [RUZ: 1, 

RMZ: 0, RLZ: 0, LUZ: 2, LMZ: 1, LLZ: 0], the whole image is classified as ILO category 2. 

Zone Avg height Avg width Aspect ratio Height  Width Height Width 

RUZ 679 851 1:1.25 256 320 512 640 

RMZ 678 913 1:1.34 256 340 512 680 

RLZ 677 893 1:1.31 256 330 512 660 

LUZ 686 818 1:1.19 256 300 512 600 

LMZ 685 838 1:1.22 256 310 512 620 

LLZ 684 608 1:0.88 256 230 512 460 
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Due to large variability in the appearance of pneumoconiosis images, it is difficult to train one 

robust network to achieve good results for all zones. Therefore, to further improve the 

pefromance we adopt ensemble learning where output results are combined based on majority 

voting between the three models. 

5.3 Results 

5.3.1 Zone-level classification 

We have evaluated the performance of zone-based classifiers using two different zone sizes. Table 

5-3 summarizes the classification results for six different zones with the zone height = 256. The zone 

width is selected using the aspect ratio from Table 5-2. We evaluated the performance of each 

model using classification accuracy, sensitivity, specificity, F1-score and Receiver Operating 

Characteristic curve (ROC) - AUC (Area under the Curve) score. The weighted averaged sensitivity, 

specificity, F1-score and AUC is calculated by taking the mean of a metric calculated per class while 

considering the number of actual occurrences of the class in the dataset. For multi-class 

classification, performances are comparable among different networks, however, Xception model 

achieved sligthtly better results compared to all other models in terms of all evaluation metrics. All 

networks achieved best results for LUZ in the left lung and the RUZ in right lung. 

Table 5-3 Multi-class classification performance on zone level using three models with image height = 256 

 ResNet152 InceptionResNetV2 Xception 

Zone Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall 

LLZ 0.7429 0.7317 0.7428 0.7339 0.7124 0.7339 0.7413 0.7315 0.7413 

LMZ 0.7604 0.7469 0.7604 0.7732 0.7681 0.7732 0.7845 0.7826 0.7845 

LUZ  0.8348 0.8256 0.8348 0.8317 0.8246 0.8317 0.8308 0.8262 0.8309 

RLZ 0.7140 0.7170 0.7139 0.7214 0.7168 0.7214 0.7312 0.7314 0.7312 

RMZ 0.7513 0.7490 0.7513 0.7543 0.7498 0.7543 0.7628 0.7495 0.7628 

RUZ  0.8212 0.8104 0.8213 0.8222 0.8045 0.8222 0.8101 0.8010 0.8101 

Avg. 0.7708 0.7634 0.7708 0.7728 0.7627 0.7728 0.7768 0.7704 0.7768 

 

On the other hand, worst performances were achived by all networks for LLZ in the left lung and RLZ 

in the right lung. Peformance of LMZ is slightly better than RMZ for all models. There is a significant 

performance difference between upper zones and lower zones with the same model. 

Table 5-4 summarizes multi-class classification performance with the zone height = 512. Like with 

the zone height = 256, performances of the three models are comparable for the six zones. However, 

Xception model achieved slightly better results compared to ResNet152 and InceptionResNetV2 

models. At zone level, top zones for both lungs (LUZ and RUZ) have an outstanding performance in 

classification accuracy (> 0.8), while low accuracies were obserbed in the bottom two zones: LLZ and 

RLZ. The left middle zone achived slightly better results than the right middle zone. This could be 

due to that each of the right and left lungs has a hilum that lies roughly midway down the lung. 

When moving from the hilum to the periphery on the bottom, there is a gradual reduction of the 

anatomical lung markings. All these anatomical features weaken the accuracy in the two bottom 

zones. In contrast,  the top left and right zones have more easily identifiable radiographic 

abnormalities in pneumoconiosis, resulting in higher accuracies. If we compare the performance 
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based on the zone size, we can see that the performances are comparable between the zone height 

of 256 and 512, though all networks achived slightly better results using the zone height of 512.  

Table 5-4 Multi-class classification performance on zone level using three models with image height = 512 

 

5.3.2 Image-level classification 

The performance of pneumoconiosis classification at image level with the zone height of 256 is 
depicted in Table 5-5. Similarly to zone level classification results, Xception model outperforms all 
other models for binary classification in terms of all evaluation metrics. For multi-class classification,  
InceptionResNetV2 model outperforms ResNet152 and Xception in terms of accuracy, sensitivity 
and F1-score; however, Xception model achieves slightly better results for specificity and AUC. To 
further improve the performance we developed the ensemble model based on majority voting from 
these three models. The ensemble model offers a higher performance than the individual models 
for pneumoconiosis detection and classification in terms of all metrics. 
 

Table 5-5 Pneumoconiosis detection and classification performance using image height = 256 

 Binary-class classification Multi-class classification 

Models Accura
cy 

Precisio
n 

Recall F1-
score 

AUC Accuracy Precision Recall F1-
score 

AUC 

ResNet152 0.8626 0.8643 0.8626 0.8619 0.795 0.7029 0.7355 0.7029 0.7112 0.793 

Inception 
ResNetV2 

0.8581 0.8633 0.8582 0.8568 0.796 0.7133 0.7413 0.7133 0.7219 0.797 

Xception 0.8759 0.8787 0.8760 0.8751 0.800 0.7030 0.7447 0.7030 0.7170 0.798 

Ensemble 
model 

0.8921 0.8930 0.8922 0.8922 0.829 0.7561 0.7715 0.7561 0.7588 0.826 

 
Table 5-6 presents the performance of pneumoconiosis classification at image level with the zone 

height of 512. Simarly to the zone height of 256, for pneumoconiosis detection, Xception model  

outperforms all other models in terms of all metrics. However, for multi-class classification 

ResNet152 outperforms other two networks in terms of accuracy, sensitivity and F1-score. Xception 

model achieved best results for specificity and AUC.  The ensemble model outperforms all three 

individual networks. However, the performance of ensemble model for different zone heights are 

comparable. The ensemble model performs slightly better with the zone height of 256 compared to 

the zone height of 512 for pneumoconiosis detection. For multi-class classification, the ensemble 

model performs slightly better with the zone height of 512 compared to the zone height of 256 in 

terms of accuracy and sensitivity. In terms of specificity, F1-score and AUC the same model performs 

better with the zone height of 256 compared to the zone height of 512.  

 

 ResNet152 InceptionResNetV2 Xception 

Zone Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall 

LLZ 0.7324 0.7084 0.7324 0.7480 0.7339 0.7480 0.7384 0.7329 0.7384 

LMZ 0.7709 0.7587 0.7709 0.7656  0.7390 0.7656 0.7754 0.7628 0.7754 

LUZ  0.8186 0.8091 0.8186 0.8309 0.8159 0.8309 0.8342 0.8305 0.8342 

RLZ 0.7245 0.7141 0.7245 0.7244 0.7221 0.7244 0.7370 0.7351 0.7370 

RMZ 0.7437 0.7467 0.7437 0.7520 0.7398 0.7520 0.7591 0.7529 0.7591 

RUZ  0.8207 0.8036 0.8206 0.8244 0.8181 0.8244 0.8262 0.8166 0.8262 

Avg. 0.7685 0.7568 0.7685 0.7742 0.7615 0.7742 0.7784 0.7718 0.7784 
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. 

Table 5-6 Pneumoconiosis detection and classification performance using image height 512 

 Binary-class classification Multi-class classification 

Models Accuracy Precision Recall F1-score AUC Accuracy Precision Recall F1-
score 

AUC 

ResNet152 0.8515 0.8524 0.851 0.8515 0.7939 0.7274 0.7376 0.7274 0.7272 0.7995 

Inception 
ResNetV2 

0.8589 0.8646 0.858 0.8576 0.7992 0.7184 0.7427 0.7185 0.7220 0.7990 

Xception 0.8700 0.8701 0.870 0.8698 0.8032 0.7140 0.7377 0.7141 0.7198 0.7999 

Ensemble 
model 

0.8811 0.8837 0.881 0.8812 0.8238 0.7599 0.7632 0.7599 0.7566 0.8215 

 

The average confusion matrix over the five folds for multi-class classification using the ensemble 

model and the zone height of 512  is presented in Table 5-7. The performance of pneumoconiosis 

classification could be affected by the presence of large opacities in some zones, so we have exclude 

some zones from our experiment, therefore, for ILO category 2 and category 3 we had smaller 

number of samples to train the model. Secondly, although we had the zone-wise ground truth for 

most training images, zone labels were assigned to their image level labels for a small number of 

training samples,. This could impact the ability of the models to learn from the training data. Finally, 

some zones contained artefacts that may negatively affect the classification performance. Examples 

of some zones with artefacts are presented in Figure 5-2. 

Table 5-7 Confusion matrix for multiclass classification for  ensemble model using zone height = 512 

 
 
 
 
 
 
 
 
 

 

Figure 5-2 Example of some zones with artifacts 

 

Predicted 
class 

True class 

Class 0 Class 1 Class 2 Class 3 

Class 0 113. 10.8 0.8 0. 

Class 1 19.6 64.8 12.4 2. 

Class 2 0.8 7.6 23.2 3.4 

Class 3 0.2 0.4 7. 4.6 



 

26  |  CSIRO Australia’s National Science Agency 

5.3.3 Ablation study 

Additionally, we have conducted the same classification experiment directly on the whole images 

omitting the zone-level classification step and the fusion of the obtained zone labels into an image 

label. The whole chest X-ray image was resized to 580 x 512 and fed into the CNN model as shown 

in Figure 5-3. The three network architectures with the same hyperparameters as given in Section 

5.2 were used. Table 5-8 displays the results for binary and multi-class classification obtained in 

this experiment. Compared with the results in Tables 5-5 and 5-6, the whole image-based 

classification performed better than the zone-based one, using the same models and datasets, for 

both binary and multi-class setups. This outcome further highlights the need of accurate labels for 

training data, such as accurate zone labels in our case. 

 

 

Table 5-8 Pneumoconiosis classification performance using three CNN-based models on the whole image 

 Binary-class classification Multi-class classification 

Models Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score 

Xception  0.9349 0.9360 0.9350 0.9349 0.8196 0.8220 0.8196 0.8169 

ResNet152 0.9401 0.9408 0.9402 0.9400 0.8204 0.8228 0.8204 0.8183 

IncepV3 0.9291 0.9296 0.9291 0.9290 0.8130 0.8186 0.8130 0.8121 

 

5.4 Summary and future work 

In this chapter, we applied three different network architectures to develop the zone-based deep 

learning models, namely, ResNet152, InceptionResNetV2 and Xception. The models were trained 

on the two different zone sizes. The performances of the three network architectures were 

comparable for zone- and image-level classification. For all models, the upper lung zones achieved 

the best results and the lower lung zones achieved the worst results for both lungs. 

Performances were also comparable for the zone heights of 256 and 512. To further improve the 

classification performance, we utilized an ensembling technique based on maximum voting among 

the three networks architectures. For both binary and multi-class classification and the two different 

zone sizes, the ensemble model outperformed all three individual networks significantly in terms of 

Input 
(CXR image) 

CNN model 

Cat 0 

Cat 1 

Cat 2 

Cat 3 

Output 

 (BL category) 

Figure 5-3 Overview of the CNN-based model for BL classification without zone labels 
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all evaluation metrics. The whole image-based classification, however, outperformed, the ensemble 

model, possibly, due to the absence of inaccurate zone labels for training the models for part of the 

dataset.  

To improve the zone-based classification performance, future works may include: 

1) Generating some artificial images with ILO category 2 and 3 to solve the problem of data 
imbalance;  

2) Removing the artefacts of the images, or excluding images with the artefacts; and 

3) Obtaining zone-wise annotations of all CXR images. 
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6 Deep Learning-Based Classification of Radiographs 
of Pneumoconioses Using Multiscale CXRs 

In this chapter we propose a novel multi-scale network structure, Multi-Scale CNN (MS-CNN), for 

pneumoconioses categorisation into four classes (ILO categories 0, 1, 2 and 3). MS-CNN is based on 

the EffecientNet-b0 model described in Chapter 4, which can enhance the ability of deep learning 

models to capture discriminative detail features in high-resolution images. Additionally, we 

investigate the effect of different input image resolutions on the performance of EffecientNet-b0, 

the effect of transfer learning using different publicly available large image datasets, and the effect 

of various image pre-processing techniques on the classification perfromamce. The final 

experiments show that the proposed MS-CNN can significantly improve the classification 

performance of the baseline model, EffecientNet-b0, and outperforms state-of-the-art deep 

learning model, CheXNet.   

6.1 Input image resolution 

The deep-learning-based pneumoconiosis radiograph classification suffers from the dilemma 

between highly detailed features, like small opacity and pleural plaques in the lung field, and the 

very low resolution that a typical deep convolutional network can effectively use. For example, 

VGG [37] is only capable of ingesting 224 x 224 three-channel 8-bit input images, and ResNet 

usually uses 224 x 224 and can be transferred into 384 x 384 and 448 x 448 images [38]. For 

clinical diagnosis with chest X-ray images doctors often use the standard full resolution images for 

the diagnosis of pneumoconiosis, which are stored in Digital Imaging and Communications in 

Medicine (DICOM) libraries [39]. DICOM images usually contain more than 2,000 pixels in each 

dimension and three-channel 16-bit grayscale for each pixel, which is difficult to be fully utilized in 

the current deep learning networks. 

Figure 6-1 shows the relationship between input resolution, the four-class classification accuracy of 

EffecientNet-b0, and the standard deviation for five-fold validation. The EfficientNet-b0 model was 

explained in Chapter 4. Its structure is designed for 224 and 384 square input images and degrades 

when the input resolution is very high (>800). The best four-class classification accuracy can be 

achieved when the input size is between 600 to 700 square. The lowest deviation is for 400 to 500 

square. The accuracy decreased, and the standard deviation increased when the input resolution 

was higher than 700 square. For pneumoconiosis detection and classification, we expect the deep 

learning model can operate on higher resolution images so that the more detailed image features 

such as pneumoconiosis lesions could be extracted. 
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Figure 6-1 The relationship between the four-class classification accuracy of EffecientNet-b0 on the 

pneumoconioses image dataset and the input resolution. The green ranges are the standard deviation of the five-

fold validation. 

6.2 Transfer learning using large-scale chest X-ray image dataset 

Recent works using deep neural networks to classify CXR images [14] usually use the model 

parameters pretrained on ImageNet [36]. For our application, we use a comparably smaller-scale 

image dataset with 1,345 chest X-ray images of different ILO categories of pneumoconiosis. The 

domain gap between ImageNet and our chest X-ray dataset is wide because ImageNet images are 

natural three-channel (colour) images while, iin contrast, our dataset only contains high-resolution 

grayscale chest X-ray images. The wide domain gap usually causes the model representation to 

degrade and make training of the model more difficult to converge. In this section, we utilised a 

bridging CXR dataset to mitigate the problems caused by the dataset domain gap. 

6.2.1 Transfer learning using ChestX-ray14 

To address the domain gap between the ImageNet and our pneumoconiosis dataset, we introduced 

another chest X-ray image dataset, ChestX-ray14 [14], as a bridge to perform transfer learning from 

the ImageNet to the pneumoconiosis dataset. ChestX-ray14 is a publicly available dataset 

comprising 112,120 frontal-view chest X-ray images of 30,805 unique patients (collected from 1992 

to 2015) with the text-mined fourteen common disease labels. The ChestX-ray14 images are 

grayscale and reshaped to 1,024 square dimension. The images are visually similar to the images in 

our pneumoconiosis dataset, which means that it is an ideal bridging dataset for transfer learning.  

The transfer learning procedure and the image samples from ImageNet, ChestX-ray14, and our 

pneumoconiosis dataset are illustrated in Figure 6-2. We use the EfficientNet-b0 model pretrained 

with ImageNet to fine-tune a fourteen-class classification model on the ChestX-ray14 dataset with 

different input image sizes (1,024 x 1,024 and 384 x 384). Then we use the 14-class classification 

model to train the models for pneumoconiosis classification.  
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Figure 6-2 The transfer learning procedure from ImageNet bridging with ChestX-ray14 to our proposed 

Pneumoconiosis dataset. 

6.2.2 Experiment  

Experiments were conducted using the proposed transfer learning on ChestX-ray14 compared with 

the pre-trained model on the ImageNet. We used three different input image resolutions with five-

fold cross-validation for a fair comparison. The training setup is the same, except for the initial model 

and the input resolution. All experiments were conducted using the Pytorch platform and 

implemented in Python. The training batch size is 16. We used Adam optimizer and Cosine scheduler 

(T_0 = T_mult = 2) for learning rate adjustment. For all layers, the initial learning rate is 0.001. We 

conducted evaluation at the end of each training epoch and recorded the best classification 

accuracy in 100 training epochs. We used 0.05 brightness and 0.05 contrast jittering, 5 degrees 

random rotation, random resize crop to 50% of the original input image size, and random horizontal 

flipping as augmentation followed by image normalization with mean = 0.5 and std = 0.25. 

Table 6-1 Comparison of pneumoconiosis classification accuracies with different transfer learning datasets and 

different input image dimensions 

 resolution 
Fold 

AVE DEV 
1 2 3 4 5 

Pre-trained 
on 

ImageNet 

224 84.44 80.37 79.93 82.77 85.02 82.51 5.34 
384 85.19 79.63 80.67 83.90 83.90 82.65 5.64 
448 85.19 81.11 82.90 84.64 83.52 83.47 2.55 

Pre-trained 
on 

ChestX-ray14 

224 85.19 82.96 80.67 82.02 86.52 83.47(+0.94) 5.61(+0.27) 
384 84.07 81.11 81.41 83.52 85.02 83.03(+0.38) 2.90(-2.74) 
448 84.81 84.44 84.01 85.39 83.90 84.51(+1.04) 0.38(-2.17) 
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The experimental results are shown in Table 6-1. The model pre-trained on ChestX-ray14 achieved 

better results than that pre-trained on ImageNet for all the input image resolutions. The average 

four-class classification accuracy improvement is 0.79%, which is repeatable and statistically 

significant. Another notable improvement is that the deviation (Dev) is lower using the model 

transferred from ChestX-ray14, which means that the model is more robust to data perturbations. 

6.3 Data preparation 

Before the images are processed by the CNN model, we need to do some pre-processing to reveal 

their discriminative features and eliminate confusing information. We investigated different 

techniques to pre-process images, including lung field mask application, cropping/resizing, and 

whether to keep the original ratio aspect of the images. Numerous experiments have been 

conducted to explore the optimal pre-processing techniques for the pneumoconiosis X-ray image 

classification. 

6.3.1 Lung Mask 

The original CXR images are grayscale, and pneumoconiosis lesions only appear in the lung fields, 

which means that the rest of the image  contains less relevant information than the lung fields. 

Given such a priori knowledge, we performed the lung field segmentation and generated a lung 

mask using the method described in Chapter 3. We tried two methods of applying masks to the 

original CXR images so that the deep learning model knows where to pay its attention. The first 

method is to apply the lung field mask on an image and discard the background by setting the pixel 

values to “0”, which we name “Mask”. The second method is to apply the mask and discard the 

background in only one of the three input channels, which makes the image artificially colored, and 

we call it “Color” in the rest of the report. We compared the classification performance of the two 

masking methods with the original images in this section.  

6.3.2 Image resizing 

The original dimension of the images in the pneumoconiosis datasets ranges from 1,767 square to 

5,376 square. Some image shapes are not square, so we need to normalize the image resolution. 

For data preparation, we tried four different pre-processing methods and their combinations. As 

shown in Figure 6-3, with the original image and its lung field mask, we pad it into a square and keep 

its aspect ratio without cropping or resizing (the second column of Figure 6-3). Or we can reshape 

the image into a square instead (the fourth column of Figure 6-3) without considering the original 

aspect ratio, named “Reshape”. The other way of pre-processing is to crop its lung region with the 

bounding box, named “Crop” (the third column of Figure 6-3). We have four combinations of image 

resizing methods. Combined with the three types of masking methods described in Section 6.3.1, 

we tried 12 methods for data pre-processing as shown in Figure 6-3. 
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Figure 6-3 Samples of the combination of different image pre-processing methods. 

6.3.3 Experiment 

The experimental setup, hyperparameters and data augmentation are the same as described in 

Section 6.2.2. We used previously described masking and reshaping methods to train a model using 

448 x 448 input resolution with five-fold cross-validation. We calculated the average four-class 

classification accuracy and its standard deviation to verify the effectiveness of each data pre-

processing method. Higher accuracy means higher performance and better representation ability 

of the model trained with the correspondent dataset, while lower deviation usually means higher 

robustness over data perturbation. 

The results are listed in Table 6-2. Colored images without reshaping or cropping achieved the best 

results in the five-fold cross-validation experiment, and the best overall classification accuracy. 

Colored cropped images produced the second-best overall performance. On the opposite side, 

masked images achieved the lowest classification accuracy, which means that the background can 

provide some useful information, such as image quality, contrast, brightness, etc., to the model and 

assist the model in making decisions. 

We have evaluated the average performance of each pre-processing step with the original image. 

The results shown in Table 6-3 demonstrate that “Mask” is not improving the classification result. 

The reason could be that it discards useful background information. Reshaping is also not helpful, 

for it distorts the original image by changing the aspect ratio, making pneumoconiosis lesions more 

difficult to detect. Replacing one image channel with the lung field mask (“Color”) and cropping 

using segmentation bounding boxes improves the classification accuracy significantly because it 

keeps the hint from the background and enhances the lung field information. In the rest of this 

chapter we will use the images with color and cropping pre-processing unless noted otherwise. 
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Table 6-2 Comparison between different data pre-processing techniques and their combination 

 Reshape Crop Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 AVE DEV 

None 

× × 85.19 78.15 81.78 83.52 85.77 82.88 9.42 

√ × 85.56 80.74 81.41 83.52 84.27 83.10 4.01 

× √ 84.44 81.48 83.27 84.27 84.64 83.62 1.71 

√ √ 84.81 82.22 81.41 83.15 83.90 83.10 1.80 

Mask 

× × 83.70 80.00 78.44 79.03 82.40 80.71 5.07 

√ × 82.96 81.11 79.18 80.90 82.77 81.38 2.39 

× √ 83.33 80.37 81.78 79.03 83.90 81.68 4.10 

√ √ 84.07 80.00 80.3 81.27 82.4 81.61 2.77 

Color 

× × 85.93 82.22 82.16 83.15 85.39 83.77 3.17 

√ × 84.44 81.48 81.04 81.64 85.39 82.80 3.90 

× √ 83.70 80.74 82.53 87.27 84.27 83.70 5.80 

√ √ 86.67 81.85 82.16 83.15 84.27 83.62 3.80 

 

Table 6-3 Comparison of performance improvement made by each of the pre-processing techniques 

 No Yes Improving 

Mask 83.18 81.37 × 

Color 83.18 83.47 √ 

Reshape 82.72 82.6 × 

Crop 82.44 82.88 √ 

6.4 Multi-Scale CNN (MS-CNN) for global-local feature fusion 

To take full advantage of the original high-resolution DICOM CXR images using the deep 

convolutional network structure, we propose a novel multiple-scale image classification system that 

combines general information from the thumbnail images and detailed information from the high-

resolution image. This novel CNN structure is customised for chest X-ray image-based lung disease 

categorisation. 

6.4.1 Method 

The framework of the proposed Multi-Scale CNN (MS-CNN) is illustrated in Figure 6-4. The original 

image and its mask, generated as described in Chapter 3, are cascaded to produce the simulated 

colored images, as described in section 6.3.1. The masked color images are used to train a first-stage 

local feature extractor. We have replaced the last fully connected layer with a convolutional layer 

using the same input and output dimensions and 1 x 1 kernel, so that the CNN can generate feature 

maps to represent the network's activation for each class. We apply a global average pooling layer 

and obtain the class scores. Label smoothing Softmax operator is used to calculate the loss between 

the ground truth label and the output class score, and train the local feature extractor. 
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Figure 6-4 the framework of Multi-Scale CNN 

The output feature maps from the local stream are resized and cascaded to the thumbnail of the 

original image and mask to form the 6-channel input image for the global stream CNN. The output 

feature of the global stream CNN is cascaded with the local feature to produce the fused feature for 

classification. Finally, we use a fully connected layer to obtain the output confidence score of each 

class. 

6.4.2 Experimental setup 

We used the model transferred from the ChestX-ray14 dataset and finetuned the model with our 

pneumoconiosis dataset. Firstly, we finetuned the model of the local stream alone. In the next step, 

we loaded and fixed the parameters in pretrained local steam and finetuned the global stream. The 

hyperparameters of the training are the same as described in Section 6.2.2. 

6.4.3 Feature fusion setting 

We have tested different methods of fusing the feature of the local stream and the global stream, 

e.g., cascading the output label, the last layer image feature, the second and the third last layer 

image feature from the two streams, to determine the best way of feature fusion. We did not use 

the ChestX-ray14 pretraining in this experiment, and the input and resized image resolutions for the 

two scales of the model are 1,120 and 384 square. 

Table 6-4 Classification accuracy using different layers of cascaded features 

 

Fold 
AVE DEV 

1 2 3 4 5 

label 85.93 82.96 81.04 86.14 84.64 84.14 4.61 

Last layer feature 86.30 82.96 81.04 86.14 84.64 84.23 4.97 

Second last layer feature 84.81 82.22 81.04 85.39 84.27 83.55 3.39 

Third last layer feature 84.81 82.59 81.04 85.39 83.90 83.55 3.08 
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Table 6-4 shows the average four-class classification accuracy of five-fold cross-validation using 

different fused features. According to the results in the table, the cascaded last layer feature and 

the label achieve similar accuracy, but the last layer feature performs slightly better. In the rest of 

this section we used the cascaded last layer feature as the multiple-scale feature for the 

classification. 

6.4.4 Global stream input resolution 

We investigated the relationship between the input resolution and the model’s classification 

performance. Considering the computation efficiency, we used 1,120 as the input size of the local 

stream, and compared 224, 384, and 448 for the global stream. The four-class five-fold validation 

classification accuracies for each input resolution are listed in Table 6-5. 

Table 6-5 Classification accuracy using different global stream resolutions 

Resolution 
Fold 

AVE DEV 
1 2 3 4 5 

1120-224 85.56 80.74 82.90 84.27 85.02 83.70 3.73 

1120-384 85.56 84.07 82.53 84.27 88.76 85.04 5.49 

1120-448 85.56 83.70 82.90 85.39 87.27 84.96 2.92 

 

Among the three tested input resolutions for the global stream, 384 achieved the best accuracy. We 

used the 1120-384 as the input resolution for the two streams in the rest of our experiments. 

6.4.5 Ablation experiments 

The ablation experiment results are shown in Table 6-6. The input resolution for the first three rows 

is 384, and for MS-CNN, the input resolution is 1120-384. The ChestX-ray14 transfer learning 

improved the accuracy by 0.38%. Colored images improved it by further 1.41%, and MS-CNN further 

improved the accuracy by 0.6%. The proposed framework obtained a notable 2.39% improvement 

over the EfficientNet-based CNN. 

Table 6-6 Ablation experiment results 

Methods Five-fold validation average accuracy 

EfficientNet-b0 82.65% 

EfficientNet-b0 + ChestX-ray14 83.03% 

EfficientNet-b0 + ChestX-ray14 + Color 84.44% 

EfficientNet-b0 + ChestX-ray14 + Color + MS-CNN 85.04% 

6.4.6 Binary classification 

We used our proposed methods to train a binary classification model for pneumoconiosis 

detection. Experiments were conducted using the same dataset and the five-fold cross validation 

method. The  accuracy, sensitivity, precision, specificity and F1 score of the model are listed in 

Table 6-7. 
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Table 6-7 Binary classification performance 

 fold-1 fold-2 fold-3 fold-4 fold-5 AVE 

Accuracy 0.938 0.968 0.951 0.941 0.970 0.949 

Precision 0.923 0.985 0.945 0.932 0.976 0.946667 

Sensitivity 0.962 0.952 0.962 0.958 0.967 0.957333 

Specificity 0.912 0.984 0.938 0.923 0.974 0.939667 

Fscore 0.943 0.969 0.953 0.944 0.972 0.952 

 

6.4.7 MS-CNN on ChestX-ray14 

Besides the Pneumoconioses image dataset, we also tested our proposed MS-CNN on the 

benchmark CXR dataset, ChestX-ray14. We described the dataset in section 6.2. Experiments were 

conducted to compare the performance of MS-CNN with state-of-the-art deep elarning model 

CheXNet [14]. The experimental results for the detection of each disease are listed in Table 6-8. The 

proposed MS-CNN outperformed CheXNet in the detection of nine out of fourteen diseases. 

Especially for fibrosis (+5.68%) and nodule (+5.37%), which depend highly on the details in image 

texture, and are the key factors for Pneumoconioses detection. The MS-CNN achieved an average 

accuracy of 85.41% for the classification of 14 diseases and outperformed the CheXNet by 1.27%. 

Table 6-8 Comparison between the proposed MS-CNN and the CheXNet on ChestX-ray14 dataset 

Label CheXNet MS-CNN Improvement 

Atelectasis 80.94 83.59 +2.65 

Cardiomegaly 92.48 91.27 -1.21 

Consolidation 79.01 81.24 +2.23 

Edema 88.78 90.18 +1.40 

Effusion 86.38 88.84 +2.46 

Emphysema 93.71 94.85 +1.14 

Fibrosis 80.47 86.15 +5.68 

Hernia 91.64 91.50 -0.14 

Infiltration 73.45 71.50 -1.95 

Mass 86.76 86.01 -0.75 

Nodule 78.02 83.39 +5.37 

Pleural_Thickening 80.62 80.62 +0.00 

Pneumonia 76.8 76.35 -0.45 

Pneumothorax 88.87 90.29 +1.42 

AVE 84.14 85.41 +1.27 

6.5 Conclusion and future work 

In this chapter, we proposed a novel deep learning-based framework for Pneumoconioses 

categorisation. Firstly, we apply transfer learning using a large-scale CXR dataset, ChestX-ray14, to 
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address the challenge of cross-domain learning between the natural images in ImageNet and our 

Pneumoconioses CXR images. Secondly, we use multi-channel masking to provide the model with 

the mask information while restoring the discriminative background information. Finally, we 

proposed the multi-scale CNN for learning detailed texture and the global outline in parallel and 

improving the accuracy of pneumoconiosis classification. Our experiments show that the model is 

more potential and interpretable than the previous methods. 

The future works may include: 

1) Instead of the two-scale CNN, using more scales in MS-CNN to enhance the model 

representation; 

2) Using annotated pneumoconiosis lesions to generate synthetic ILO positive images to 

improve the model's robustness; and 

3) Using more recent large-scale CXR datasets to pretrain the MS-CNN model, e.g., VinDr-CXR 

[43], CheXpert [44], and MIMIC-CXR [45]. 
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7 Pilot Study 

In this chapter a pilot study is described that aims to validate our automated pneumoconiosis 

prediction methods in clinical environment. We have developed a software tool named  AI-Xrayder 

that utilizes the deep learning-based pneumoconiosis detection and classification methods 

described in Chapters 5 and 6. AI-Xrayder has been deployed to Lung Screen Australia Pty Ltd, a lung 

screening organisation specialising in occupational lung disease screening.   

7.1 Aims and design 

A pilot, or validation, study is required to ensure that the software works as expected, robustly 

and with similar accuracy, in a real environment as during an initial laboratory testing. In the first 

phase of the pilot study, an uncurated set of radiographs collected by Lung Screen and read by at 

least two B-readers is also processed by AI-Xrayder. Further in this section the outcomes on this 

dataset are presented and compared with the laboratory results from the previous sections. Our 

primary aim is to select the best performing method for a longer term second phase of the pilot 

study. 

The secondary, longer term aim is to run AI-Xrayder with the best performing method for an 

extended period of time (3 to 6 months) alongside the Lung Screen’s usual screening routine, 

targeting systematic and outlier errors and collecting more radiographs with pneumoconiosis as 

well as normal radiographs typical for coal miners. This will be followed by finetuning and re-

training the deep learning-based models with the newly collected data.  

Additionally, we are seeking a feedback from Lung Screen on AI-Xrayder’s usability and reliability.  

7.2 Implementation 

AI-Xrayder software is implemented as a web service and consists of a client (web browser) that 

uses HTTP (Hypertext Transfer Protocol) to make requests of a web server, through an internet or 

locally, if the client and server are located on the same machine. The web server initates a child 

process that runs a machine learning model in a separate computing environment. A diagram in 

Figure 7-1 displays the three parts of the software and the flow of information between them. 

 

Figure 7-1 A diagram of AI-Xrayder architecture 
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The client part of AI-Xrayder is implemented using AngularJS – free and open-source JavaScript-

based framework for developing single-page web applications [42]. The server is implemented 

using Node.js, an open-source JavaScript runtime environment, and Express – a popular Node.js 

web framework [43]. The machine learning models are implemented as described in 

corresponding chapters of this report and run in a Python environment with necessary libraries 

installed. 

7.3 User experience 

Lung Screen has been provided with the written instructions on how to install and launch AI-

Xrayder. They reported that the installation and operation of AI-Xrayder was smooth and error-

free.  

For the pilot study only we mandate that AI-Xrayder is installed on the same machine that is used 

to open AI-Xrayder web application. This avoids security issues with sending sensitive data, such as 

medical images, over a network, and also saves computational time and resources.  

 

Figure 7-2 AI-XRayder user interface as seen in a Google Chrome web browser 

The web page presented to a user is shown in Figure 7-2. A user can choose which classification 

methods they want to apply, or all of them, and select between One Image and Batch Prediction 

options (tabs). In One Image tab, when an input image file is selected, an uploaded image is 

displayed in the browser, and the chosen classification methods are applied to this image when a 

user clicks Predict button (see Figure 7-3). 

The methods offered are divided into Multi-class and Binary. Multi-class and Binary Multi-scale 

methods are described in Chapter 6, while Zone-based and Full image-based multi-class and binary 

classification methods are described in Chapter 5. 
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Figure 7-3 User interface showing one image is selected for classification 

 

Batch prediction means classifying all the images in an input directory. When Batch Prediction 

option is selected a user has a choice of utilizing a directory configured in advance, or uploading 

images from a directory they choose. Figure 7-4 shows both options. Batch prediction from a 

preconfigured directory is advantageous when a web server and input image directory are on the  

same machine or local network. Not having to upload images saves computational times and 

resources. A configuration file is a text file in JSON format, with fields for input and output 

directories to be configured by the user.  

  

 

Figure 7-4 A. Input images from a preconfigured directory are used for classification. B. Images from a directory 

selected by a user are uploaded to the web server for classification. 

 

The results of classification are stored in a text file in a tablular (CSV) format and can be 

conveniently opened with MS Excel or similar applications. For each multi-class method, the 

primary category and the next likely category, with the corresponding probabilities, are outputted. 

For the binary methods, the most likely class – normal or abnormal – and its probability are 

outputted and stored in the file. 
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7.4 Study Results and Analysis 

Lung Screen tested 209 chest X-rays with AI-Xrayder. Their class distribution is shown below: 

Table 7-1 X-ray images used in the pilot study 

Chest X-rays number Class 0 Class 1 Class 2 Class 3 

Total  = 209  100 100 6 3 

 

The classification results with each multi-class and binary method are given in Table 7-2. The 

confusion matrices are shown in Figure 7-5 for multi-class classification and Figure 7-6 for binary 

classification. Clearly, all the tested methods have performed better in the laboratory settings, 

especially the zone-base and full-image based methods. For multi-scale methods, the difference of 

performance in clinic and laboratory is about 8-10%, which could be explained either by  differences 

in images - we have used chest X-rays from four different sources to train the methods while the 

pilot study was conducted on images from one source, RSHQ, or by a bias in image annotations that 

haven’t been discovered yet. We will move to the second phase of the pilot study using the multi-

scale model as our preferred method, and will endeavour to improve the classification performance 

in clinic by (1) working closely with radiologists to understand a possible bias, and (2) building up a 

more representative training set that consists of screening chest X-rays only. 

 

Table 7-2 The pilot study classification results for multi-class and binary methods 

Evaluation metrics Multi-scale CNN Zone-based  Full-image based 

Multi-class 
Classification 

Accuracy 74.64% 43.06% 59.33% 

Binary 
Classification 

Accuracy 86.12% -- 62.68% 

Sensitivity 82.57% -- 98.17% 

Specificity 90.00% -- 24.00% 

 

 

 

 

  

Multi-scale Zone-based Full image-based 

Figure 7-5 Confusion matrices for multi-class classification methods 
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Figure 7-6 Confusion matrices for binary classification method 

Multi-scale Full image-based 
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