
 

 

 

 
 

 
 

  

 

 

System Demonstrator of a 
Portable NIR Spectrometer 
for  

Rapid Stone Dust 
Compliance Testing 

 

Milestone Three Report 

  



Report Information 

Title: System Demonstrator of a Portable NIR Spectrometer for Rapid Stone Dust Compliance   

Testing 

Client: Lynne Magee 

Project Liaison Officer 

Coal Health and Safety Trust 

Level 21 

44 Market Street 

GPO Box 2842 

Sydney 

NSW 2000 

Australia 

Client Reference: 20663 

Document No: MR303-0014-0003 

 

Author, Reviewer and Approver Details 

Prepared by: 
Shevaune Zeng 

Senior Engineer 
Date: 12/01/2024 

 

Reviewed by: 

Eleonora Widzyk-

Capehart 

Principal Scientist 

Date: 12/01/2024 
 

Approved by: 
Gareth Kennedy 

Director MSTRC 
Date: 12/01/2024 

 

 

Document Owner 

State of Queensland as represented by Resources Safety & Health Queensland (RSHQ) acting through the Safety in 

Mines, Testing and Research Station (Simtars) 

ABN 49 809 734 894 

2 Robert Smith Street, Redbank, Queensland, Australia 4300 

169 Sydney Street, Mackay, Queensland, Australia 4740 

Tel: +61 7 3810 6333 

Fax: +61 7 3810 6363 

Email: enquiries@simtars.com.au 

www.simtars.com.au 

Certified to ISO 9001, ISO 14001, AS/NZS 4801, ISO/IEC 17025:2005 

Registered Training Organisation (National Provider Number 45647) 

The Client agrees not to release any publicity or advertising copy mentioning Simtars or its employees unless approved by the Executive Director of Simtars in writing prior 

to its release.  Submission of test reports or certificates by the Client to statutory or regulatory authorities may not be published except in full, unless permission for publication 

of an approved abstract has been obtained, in writing, from the Executive Director of Simtars.

mailto:enquiries@simtars.com.au
http://www.simtars.com.au/


 

AF0066 Status Date: 011121              Coal HST 20663 – Milestone Three Report Page 1 of 41 

Contents 

Executive Summary  ............................................................................................................................... 5 

1.0 Introduction ..................................................................................................................................... 6 

2.0 Project Overview ............................................................................................................................ 6 

2.1. Background .................................................................................................................................... 6 

2.2. Total Incombustible Content ........................................................................................................... 7 

2.3. Spectrometers ................................................................................................................................ 8 

2.4. Project Objectives .......................................................................................................................... 8 

2.5. Timeline .......................................................................................................................................... 9 

2.6. Budget ............................................................................................................................................ 9 

3.0 Spectrometer Selection ................................................................................................................ 10 

3.1. Selection Criteria .......................................................................................................................... 10 

3.1.1. Price .............................................................................................................................. 10 

3.1.2. Ease of Adaptability ...................................................................................................... 10 

3.1.3. Performance .................................................................................................................. 10 

3.2. Selected Spectrometers ............................................................................................................... 10 

3.2.1. Stellarnet NIR ADK Portable Spectrometer .................................................................. 10 

3.2.2. Lightnovo miniRaman Portable Spectrometer .............................................................. 10 

3.3. Rejected Spectrometers ............................................................................................................... 11 

4.0 Sample Preparation ...................................................................................................................... 12 

4.1. Sample Selection ......................................................................................................................... 12 

4.2. Sample Dosing ............................................................................................................................. 13 

4.3. TIC Validation ............................................................................................................................... 13 

5.0 Model Development for Stellarnet NIR ADK Portable Spectrometer ........................................... 15 

5.1. NIR Spectra Data Acquisition ....................................................................................................... 15 

5.2. NIR Spectra Data Pre-Processing................................................................................................ 16 

5.2.1. Adjustment of Wavelength Range of Raw NIR Spectra ............................................... 16 

5.2.2. Correction of Truncated NIR Spectra ............................................................................ 16 

5.2.3. Smoothing of Corrected NIR Spectra ........................................................................... 17 

5.2.4. Data Cleaning of Smoothed NIR Spectra ..................................................................... 18 

5.2.5. Splitting of Cleaned Data .............................................................................................. 18 

5.2.6. Transformation of split data ........................................................................................... 19 

5.3. NIR Model Development and Evaluation ..................................................................................... 19 

5.3.1. NIR Classification Model ............................................................................................... 19 

5.3.2. NIR Regression Model .................................................................................................. 22 

5.3.3. NIR Classification and Regression Model Comparison ................................................ 24 



 

AF0066 Status Date: 011121              Coal HST 20663 – Milestone Three Report Page 2 of 41 

6.0 Model Development for Lightnovo miniRaman Portable Spectrometer ....................................... 25 

6.1. Raman Spectra Data Acquisition ................................................................................................. 25 

6.1.1. Calibration of Lightnovo miniRaman Portable Spectrometer ........................................ 25 

6.1.2. Background Correction ................................................................................................. 25 

6.1.3. Baseline Correction ....................................................................................................... 25 

6.1.4. Smoothing ..................................................................................................................... 25 

6.2. Raman Spectra Data Pre-Processing .......................................................................................... 26 

6.2.1. Alignment of Raw Raman Spectra ................................................................................ 26 

6.2.2. Normalization of Aligned Raman Spectra ..................................................................... 26 

6.2.3. Data Cleaning of Normalized Raman Spectra .............................................................. 28 

6.2.4. Splitting of Cleaned Data .............................................................................................. 29 

6.3. Raman Model Development and Evaluation ................................................................................ 29 

6.3.1. Raman Classification Model .......................................................................................... 30 

6.3.2. Raman Regression Model ............................................................................................. 33 

6.3.3. Raman Classification and Regression Model Comparison ........................................... 34 

7.0 NIR and Raman Model Comparison ............................................................................................ 35 

8.0 Conclusions .................................................................................................................................. 36 

9.0 Recommendations and Future Developments ............................................................................. 36 

9.1. Sample Selection ......................................................................................................................... 36 

9.2. Data Pre-Processing and Analysis ............................................................................................... 36 

9.2.1. Stellarnet NIR ADK Portable Spectrometer .................................................................. 36 

9.2.2. Lightnovo miniRaman Portable Spectrometer .............................................................. 36 

10.0 Acknowledgement ........................................................................................................................ 37 

11.0 References ................................................................................................................................... 38 

12.0 Appendix ....................................................................................................................................... 40 

12.1. Spectrometer Selection ................................................................................................................ 40 

12.2. Budget Breakdown ....................................................................................................................... 41 



 

AF0066 Status Date: 011121              Coal HST 20663 – Milestone Three Report Page 3 of 41 

Table of Figures 

Figure 1 Average Disagreements and Agreements between CDEM, Harris et al., (2012) and 

Colorimetric Results with LTA for 80 % TIC (Wedel, et al., 2015) .......................................................... 9 

Figure 2 Stellarnet NIR ADK Portable Spectrometer ............................................................................ 11 

Figure 3 Lightnovo miniRaman Portable Spectrometer ........................................................................ 11 

Figure 4 Coal Quality by Region ........................................................................................................... 12 

Figure 5 TIC Target by Region ............................................................................................................. 13 

Figure 6 (a) Target vs. Internal Laboratory TIC; (b) Target TIC vs Difference between Target and Internal 

Laboratory TIC ...................................................................................................................................... 14 

Figure 7 Comparison of Target, Internal and External Laboratory TIC ................................................ 14 

Figure 8 Raw NIR Spectra .................................................................................................................... 15 

Figure 9 Truncated NIR Spectra ........................................................................................................... 16 

Figure 10 Corrected NIR Spectra ......................................................................................................... 17 

Figure 11 Smoothed NIR Spectra ......................................................................................................... 17 

Figure 12 Cleaned NIR Spectra ............................................................................................................ 18 

Figure 13 PCA Results of Training Dataset .......................................................................................... 19 

Figure 14 Confusion Chart for NIR Optimizable SVM Classification Model (Training Dataset) ........... 21 

Figure 15 ROC Curve for NIR Optimizable SVM Classification Model (Training Dataset) ................... 21 

Figure 16 Confusion Chart for NIR Optimizable SVM Classification Model (Testing Dataset) ............ 22 

Figure 17 (a) Comparison of Actual and Predicted TIC for NIR LRM (Training Dataset); (b) Residuals 

for NIR LRM (Training Dataset) ............................................................................................................ 23 

Figure 18 (a) Comparison of Actual and Predicted TIC for NIR LRM (Testing Dataset); (b) Residuals for 

NIR LRM (Testing Dataset) ................................................................................................................... 23 

Figure 19 Raw Raman Spectra ............................................................................................................. 26 

Figure 20 Aligned Raman Spectra ........................................................................................................ 27 

Figure 21 Normalized Raman Spectra .................................................................................................. 27 

Figure 22 Tukey’s Fence Data Cleaning per Category ......................................................................... 28 

Figure 23 Cleaned Raman Spectra ...................................................................................................... 29 

Figure 24 (a) Raman Intensities at Wavenumber 1334 and 1570 cm-1 of Cleaned Spectral per 

Category; (b) Optimizable Tree Model Predications (Training Dataset) ............................................... 31 

Figure 25 Confusion Chart for Raman Optimizable Tree Classification Model (Training Dataset) ...... 31 

Figure 26 ROC Curve for Raman Optimizable Tree Classification Model (Training Dataset) .............. 32 

Figure 27 Confusion Chart for Raman Optimizable Tree Classification Model (Testing Dataset) ....... 32 

Figure 28 Comparison of Predicted and Actual TIC for Raman Optimizable Regression Tree Model 

(Training Dataset) ................................................................................................................................. 34 

Figure 29 Comparison of Predicted and Actual TIC for Raman Optimizable Regression Tree Model 

(Testing Dataset) ................................................................................................................................... 34 

  



 

AF0066 Status Date: 011121              Coal HST 20663 – Milestone Three Report Page 4 of 41 

Table of Tables 

Table 1 Uncertainty of Analysis for Incombustible Content by Laboratory and Instrument .................... 7 

Table 2 Statistical Analysis of Coal Quality by Region ......................................................................... 12 

Table 3 Categories of Coal and Coal/Stone Dust Samples .................................................................. 15 

Table 4 NIR Optimizable SVM Classification Model ............................................................................. 20 

Table 5 NIR Linear Regression Model .................................................................................................. 22 

Table 6 Summary of Tukey’s Fence Data Cleaning ............................................................................. 29 

Table 7 Raman Optimizable Tree Classification Model ........................................................................ 30 

Table 8 Raman Optimizable Regression Tree Model ........................................................................... 33 



 

AF0066 Status Date: 011121              Coal HST 20663 – Milestone Three Report Page 5 of 41 

Executive Summary 

This milestone report No. MR303-0014-0003 is a final report, summarising the comprehensive work 

regime and analysis undertaken for the Coal Health and Safety Trust Project 20663 entitled “System 

Demonstrator of a Portable NIR Spectrometer for Rapid Stone Dust Compliance Testing”. 

This project sought to demonstrate that the currently commercially available devices can be used to 

determine the total incombustible content (TIC). 

This report provides the performance evaluation of two portable spectrometers, Stellarnet NIR ADK and 

Lightnovo miniRaman, with respect to: sample preparation, model development, and their abilities to 

predict TIC. 

The spectrometers’ performance was evaluated based on randomly selected one hundred coal samples 

from Queensland and New South Wales, each of them dosed with three varying amounts of stone dust, 

producing 300 coal/stone dust samples. Cross-validation during sample preparation for TIC analysis 

was completed by Simtars internal laboratory and Coal Services NSW external laboratory, indicating 

systematic error within sample preparation. Consequently, internal laboratory TIC values were utilized 

in the data analysis. 

The application of the Stellarnet NIR ADK portable spectrometer yielded the most favourable predictive 

performance in rapid TIC analysis, notably through the development of the NIR Linear Regression 

Model. The NIR Linear Regression Model exhibited superior predictive performance, achieving RMSE 

of 2.87 % and R2 of 0.81, which aligned closely with the project objectives of RMSE ≤ 5 % and R2 ≥ 0.8. 

The evaluation of the Lightnovo miniRaman portable spectrometer delivered less optimal predictive 

performance in real-time stone dust analysis to-date than the Stellarnet NIR spectrometer. The overall 

results might have been affected by various factors ranging from data acquisition, model training and 

the time constraints, which limited the scope of the evaluation, as compared to the Stellarnet NIR ADK 

spectrometer. Further analysis is warranted as recent studies related to coal samples suggest that 

additional Raman spectra acquired with various laser power setting and a systematic deconvolution 

process of the Raman spectra data would attain favourable results. 
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1.0 Introduction 

This report No. MR303-0014-0003 for the Coal Services Project 20663 entitled “System Demonstrator 

of a Portable NIR Spectrometer for Rapid Stone Dust Compliance Testing” is the final report 

comprehensively addressing the objectives and outcomes of the project across the following sections: 

 Section 2.0: Project Overview 

Section 3.0: Spectrometer Selection 

 Section 4.0: Sample Preparation 

 Section 5.0: Model Development for Stellarnet NIR ADK Portable Spectrometer 

 Section 6.0: Model Development for Lightnovo miniRaman Portable Spectrometer 

 Section 7.0: NIR and Raman Model Comparison 

 Section 8.0: Conclusions 

Section 9.0: Recommendations and Future Developments 

The first milestone report, issued on the 5th of June 2023, provided the project overview, detailed the 

sample selection, preparation and analysis, summarised the spectrometer selection and its early 

evaluation, and outlined the testing workflow and machine learning methodology (see Report No. 

MR303-0014-0001). 

The second milestone report, issued on the 6th of October 2023, updated the project budget, detailed 

the validation of sample preparation, provided the preliminary data pre-processing and machine 

learning outcomes for StellarNet NIR ADK portable spectrometer, and updated the timeline for the 

Lightnovo miniRaman portable spectrometer (see Report No. MR303-0014-0002). 

 

2.0 Project Overview 

2.1. Background 

Australian Coal mines are subject to a range of hazardous conditions that could prove costly to human 

life, especially coal dust explosions. To mitigate these risks, regulations, such as Recognised Standard 

5 (RS5) (Resources Safety and Health Queensland, 2023), mandate the dilution of combustible dust in 

the mine environment with limestone dust. This process renders the dust inert in the presence of an 

ignition source, based on insights gained from past incidents and lessons learned. 

In the USA, the Coal Dust Explosibility Meter (CDEM) was developed by NIOSH for rapid evaluation. 

The device uses a photodiode to evaluate the concentration of total incombustibles present in a sample. 

The device was evaluated in the field for use in Australian coal mines (Wedel, et al., 2015). However, 

a few shortcomings were identified, leading to the recommendation against its immediate adoption in 

the Australian context. These drawbacks encompassed inadequate reference sample design for 

Australian coal mines, user-unfriendly calibration methodology, and a lack of certification for intrinsic 

safety. Furthermore, the operational principle of the test rendered it sensitive to moisture within the 

sample, necessitating the pre-testing drying of samples. 

While the current methodology for assessing stone dust compliance relies on colorimetric testing for 

on-the-spot evaluation, this approach has its own set of limitations in terms of precision and sensitivity 

as it may be influenced by factors, such as, lighting conditions and operator subjectivity (Wedel, et al., 

2015). 
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2.2. Total Incombustible Content 

For Queensland, Australia, RS5 stipulates the requirements for incombustible content per zone, and 

how the testing methodologies are to be conducted. RS5 allows a portable instrument to be used for 

the analysis of roadway dust samples if it is as accurate as laboratory analysis. However, RS5 does not 

stipulate the accuracy required for laboratories undertaking analysis. 

Within NSW, Australia, “Roadway Dust Analysis in Underground Coal Mines” provides the stipulations 

for analysis of roadway dust for underground coal mines (NSW Resources Regulator, 2015). Similar to 

RS5, in this NSW Standard, the “chemical” method (laboratory) is deemed the authoritative method, 

however, no minimum laboratory accuracy is stipulated. Additionally, there is no stipulation for portable 

instrumentation in the NSW Standard. 

A comparison of the reported rates of uncertainty (unexpanded) for each laboratory and the CDEM is 

provided in Table 1. 

Table 1 Uncertainty of Analysis for Incombustible Content by Laboratory and Instrument 

Source Uncertainty of Analysis Procedure 

Simtars (QLD) ± 25 % (Simtars, 2022) 

Procedure for Determination of the 

Incombustible Content of Roadway Dust – 

LP0012 (Simtars, 2022) 

Coal Services (NSW) 
± 0.1 % (Coal Services, 

2023) 

Roadway Dust Analysis in Underground 

Coal Mines and In-house TM017 (NSW 

Resources Regulator, 2015) 

MSHA – National Air and 

Dust Laboratory (USA) 
± 0.7 %1 

Low Temperature Ashing (LTA) Method 

(Sapko, et al., n.d.) 

CDEM 
± 2 %2 (Schauenburg, 

2023) 
N/A 

 

Additionally, Report IC 9529 states that an interlaboratory comparison undertaken within USA showed 

a 1.7 % variation in standard deviation for well-prepared samples and can increase to 7 % incombustible 

content variation if samples were not adequately mixed/subdivided (Harris, et al., 2012). 

Laboratory gravimetric analysis is not a true measurement for material incombustibility. The only direct 

measurement of explosibility is by using a 20 L sphere or other combustible dust explosion apparatuses. 

Therefore, both gravimetric and spectral measurements of roadway dusts are testing for incombustibility 

by inference. 

The provision for instrumentation to be used in place of laboratory methodology requires that 

instrumentation is as accurate as laboratory methodology. This poses a challenge with how accuracy 

is reported not only between laboratories, but also due to the fundamental differences of the tests 

(gravimetric vs spectrometry). For instance, the CDEM provides a qualitative result (Go/No Go) while 

the laboratory testing provides a quantitative analysis. While CDEM will allow a direct comparison with 

spectroscopy classification models, regression models will need to be inferred. 

In addition, the specification sheet for the CDEM states that the accuracy is ± 2 % (Schauenburg, 2023), 

however, this is only true when using completely dried samples. Report IC 9529 states that 1 % moisture 

can decrease the IC readings by as much as 7 %. Additionally, this accuracy may be for classification 

cut-off and thus, most likely does not provide a direct incombustible content. 

 
1 The MSHA reported value of ± 0.7 % is unclear if it is an uncertainty of analysis or the error of measurement with a reference 

standard. 

2 The value reported appears to only pertain to the Pass/Fail at 80 % total incombustible. 
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2.3. Spectrometers 

The existing CDEM developed by NIOSH can provide real-time incombustible content analysis. It 

operates using broadband infrared (IR) sensors. However, a study published at the Resource Operators 

Conference (Wedel, et al., 2015) provided an analysis of the overall performance of the system. It found 

that the device was not recommended for adoption for use in Australian mining due to a few key 

disadvantages. Primarily, the device could not detect past 80 % due to the calibration model built in, 

and it was affected by inherent sample moisture. Additionally, the CDEM only provides a PASS / FAIL 

result, not a concentration analysis. 

The rapid development of spectral sensors within the last decade has resulted in numerous portable 

spectrometers being developed and available on the market. This has allowed for the identification of 

materials in the field rather than the laboratory. More recently, advances in regression modelling along 

with higher resolution sensors now allow for portable quantitative analysis of materials. For instance, 

portable X-ray fluorescence has been used for the analysis of ash content in coal (Ching, 2017). 

2.4. Project Objectives 

The ultimate goal   is to develop a prototype demonstrator unit for rapid stone dust analysis with an 

easy-to-use interface that automatically calculates total incombustibles of the analysed samples. This 

project sought to demonstrate that the currently commercially available devices can be used to 

determine the total incombustible content.  

The aims of this project were defined as follows: 

1. Select a ready-to-use portable spectrometer with the following specifications: 

a. Costs of no more than $25,000 AUD per unit. 

b. Minimal to zero development time/cost to allow analysis to be undertaken immediately. 

c. Minimal lead time for acquisition. 

d. Does not contain or require components that would exclude it from hazardous areas, 

e.g., high voltage photomultipliers and Class 4 lasers. 

2. Prepare a range of representative coal/stone dust samples with three normal distributions that 

could likely be found with roadway dusts for TIC of: 

a. 70 % 

b. 80 % 

c. 85 % 

3. Develop regression and classification models, either with standard regression analysis or 

machine learning, that can predict the incombustible content of samples meeting the following 

requirements: 

a. For Regression Model: 

i. Root Mean Square Error (RMSE) of ≤ 5 % 

ii. R2 of ≥ 0.8 (if applicable to the model) 

b. For Classification Model: 

i. Confusion Matrix better than the CDEM provided by Wedel et al (2015) (Figure 1) 
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Figure 1 Average Disagreements and Agreements between CDEM, Harris et al., (2012) and 

Colorimetric Results with LTA for 80 % TIC (Wedel, et al., 2015) 

At the end of the project, a system demonstrator was to be developed that would affirm the viability of 

a portable NIR spectrometer device for rapid stone dust compliance testing in Australian coal mines. 

2.5. Timeline 

The project commenced in January 2023, with a final spectrometer review undertaken to ensure that 

no new systems were available on the market compared to earlier analysis. The review resulted in the 

selection of two spectrometers: Stellarnet NIR ADK portable spectrometer, which arrived in late April 

2023, and Lightnovo miniRaman portable spectrometer, which arrived in late July 2023. 

The sample selection and preparation commenced in March 2023, and the last stage of the sample 

preparation was finalised in early April 2023. 

The comprehensive scanning of NIR spectra using the Stellarnet NIR ADK portable spectrometer was 

completed in May 2023. Preliminary pre-processing, analysis, and model development of NIR data were 

presented in the second milestone report in October 2023, while the final and improved results are 

detailed in this final milestone report in January 2024, as per schedule. 

The complete Raman spectra scanning utilizing the Lightnovo miniRaman portable spectrometer was 

finalised in December 2023. The pre-processing, analysis, and model development for Raman data are 

outlined in the final milestone report in January 2024. 

2.6. Budget 

The estimated total cost of the project was at $85,921.00. The cumulative project cost, inclusive of 

labour, reached $97,708.00 AUD ex GST, with the Coal Health and Safety Trust contributing $59,911. 

The majority of the project cost, totalling $44,158.00, was allocated to the purchase of the two 

spectrometers. The remaining cost of the project was associated with labour expenses for activities 

described in Sections 4.0 to 6.0. A detailed breakdown of the costs can be found in Appendix 12.2. 
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3.0 Spectrometer Selection 

This project sought to demonstrate that the currently commercially available devices can be used to 

determine the total incombustible content.  

3.1. Selection Criteria 

The criteria for spectrometer selection were the following:  

3.1.1. Price 

The overall price of the spectrometer of under $25,000 (including the development kit) was deemed 

reasonable to allow the determination if the sensors can deliver on performance. 

3.1.2. Ease of Adaptability 

The overall user friendliness and configurability of the system were an important criterion as it was not 

feasible to build a new device within the budget and timeframe allocated. 

By using devices specifically made for development, Simtars evaluated the existing technologies, the 

effectiveness of the algorithms utilised to allocate funding more effectively towards the selected product. 

Additionally, the devices selected were evaluated for use within an underground coal mining 

environment. This automatically excluded devices that rely on high energy components, such as, X-

Ray Fluorescence, Gamma and Laser Induced Breakdown Spectroscopy. 

3.1.3. Performance 

While pricing and ease of development were prioritised, it was expected that performance might be 

sacrificed. However, literature has provided substantial evidence that the analysis to be conducted with 

NIR would not likely require the use of highly sensitive sensors. The reasoning behind this was twofold: 

firstly, that the overall complexity of the spectra decreases as the total incombustible content increases 

and, secondly, the utilisation of machine learning for the algorithm reduces the spectra to several 

primary components across the entire range. 

3.2. Selected Spectrometers 

3.2.1. Stellarnet NIR ADK Portable Spectrometer 

The Stellarnet NIR ADK portable spectrometer (see Figure 2) provided a few key features that were 

advantageous to the project: operation within the wavelength range of 900 – 1,700 nm using a crossed 

Czerny Turner optical system, with < 5 nm resolution and < 0.25 nm wavelength accuracy. 

The system was provided in an already operable, ruggedised package, and came with a complete 

development package to allow greater developmental control of the system. Additionally, the 

spectrometer has packages that integrate into machine learning systems used by the project, 

specifically Python and MATLAB drivers. The manufacturer of this device also provided a preliminary 

analysis of a rudimentary sample, and the results suggested that this model would be an ideal candidate 

for use. 

3.2.2. Lightnovo miniRaman Portable Spectrometer 

The Lightnovo miniRaman portable spectrometer (see Figure 3) is based on Raman scattering of light. 

While not truly a near-infrared spectrometer in the traditional sense, it still operates using a near infrared 

laser. However, research indicated that this method of analysis could be used for coal quality analysis 

and might have had an advantage for future development towards intrinsically safe design. 

The purchased Lightnovo miniRaman portable spectrometer was ready to use without any additional 

development required by the user meeting the requirement for rapid development with the cost of the 

device within the price bracket of under $25,000. 
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Figure 2 Stellarnet NIR ADK Portable Spectrometer 

 

Figure 3 Lightnovo miniRaman Portable Spectrometer 

3.3. Rejected Spectrometers 

Several instruments were rejected from the initial proposal either due to price, lead time, performance 

and/or complexity of set-up. These instruments are listed in Appendix 12.1.  
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4.0 Sample Preparation 

4.1. Sample Selection 

For the evaluation of the spectrometers purchased, 100 coal samples from Queensland and New South 

Wales were randomly selected for analysis. The selected samples were from a range of fresh and aged 

samples with varying ash and moisture contents to provide diverse and representative spectra. 

Prior to sample preparation, these 100 coal samples underwent proximate analysis. Proximate analysis 

for all selected coal samples was undertaken by ALS Pty Ltd. The spread of values from the proximate 

analysis are shown in Figure 4. 

Additionally, statistical analysis of the coal quality between regions was undertaken to provide a 

summary of the spread between groups (QLD and NSW) (Table 2). 

 

 

Figure 4 Coal Quality by Region 

Table 2 Statistical Analysis of Coal Quality by Region 

Coal Quality Levene Test One-Way ANOVA 

Ash 0.21, p=0.65 0.19, p=0.67 

Moisture 7.20, p=0.009 4.60, p=0.04 

Volatile Matter 0.01, p=0.93 1.41, p=0.24 

Fixed Carbon 2.32, p=0.13 0.16, p=0.69 

 

As presented in Figure 4, some coal samples exhibited remarkably high ash contents, reaching 

approximately 70 %. At the sample preparation stage, it was unknown how the high ash content coal 

samples might affect the NIR and Raman spectrometer readings. The low moisture content of the coal 

samples, particularly the NSW coal samples, was likely a result of moisture loss from sample storage 
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in freezer and the age of the coal samples, which needed to be considered further in terms of the effect 

on the spectra reading and model development. 

As summarized in Table 2, both the Levene Test and the One-Way ANOVA yielded low test statistics 

and high p-values for all coal quality parameters, except for moisture. Specifically, the p-values for coal 

quality except for moisture were consistently greater than 0.05, indicating no statistically significant 

variance among regions (Kasbekar, et al., 2023). This suggests that the 100 coal samples were drawn 

from similar sample groups across Queensland and New South Wales. The notable difference observed 

in moisture content between the two regions, as indicated by a p-value less than 0.05, might be 

attributed to the preservation of the coal samples, considering that these coal samples originated from 

a span of 20 years. 

4.2. Sample Dosing 

The stone dust dosing regime was determined using three normal distributions centred around 

regulatory limits of 70 %, 80 %, and 85 %, each with a standard deviation of 5 %. Each of these three 

normal distributions generated 100 random numbers, which were then randomly applied to the 100 coal 

samples, resulting in a total of 300 coal/stone dust samples with varying target total incombustible 

content (TIC) values from the three normal distributions. The spread of the nominated TIC in coal/stone 

dust samples is displayed in Figure 5, suggesting no significant differences between QLD and NSW 

regions. 

 

 
Figure 5 TIC Target by Region 

The stone dust used for sample preparation was supplied by Sibelco and SEQ Lime. It was not 

anticipated that different stone dust suppliers would affect the NIR spectra as the primary component, 

calcium carbonate (CaCO3), does not have strong NIR attenuation. 

4.3. TIC Validation 

Validation of the target stone dust dosing rates was conducted with sub-samples taken from all 300 

dosed coal/stone dust samples being tested by Simtars for their TIC. This ensured that the tested 

coal/stone dust samples were compared to both target TIC values and internal laboratory TIC 

measurements for potential sources of error. 
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The comparison between target TIC values and those obtained through Simtars internal laboratory 

testing is presented in Figure 6, which shows that the internal laboratory values are consistently higher 

than the target TIC values and that their difference tends to diminish as the target TIC values increase. 

This systematic pattern of difference indicates the presence of consistent errors within sample 

preparation, which might be attributable to factors, such as, sample preparation methodologies or 

equipment precision. 

 

  

Figure 6 (a) Target vs. Internal Laboratory TIC; (b) Target TIC vs Difference between Target and 

Internal Laboratory TIC 

To verify this consistent difference and ensure the accuracy of the results, cross-validation was 

conducted by randomly selecting 10 sub-samples of the coal/stone dust samples and having them 

tested by an external laboratory – Coal Services NSW, which followed the same incombustible content 

analysis methods as Simtars (Simtars, 2022; NSW Resources Regulator, 2015). This cross-validation 

step helped to verify the accuracy and reliability of the internal laboratory results by comparing the test 

results obtained at different testing facilities. The results of cross-validation are presented in Figure 7, 

suggesting that both internal and external laboratory TIC values are higher than target TIC, and that 

internal and external laboratory measurements follow a tight diagonal trending with an R2 of 0.98 and 

root mean square error (RMSE) of 0.67 %. Therefore, with a systematic error in target TIC values, the 

internal laboratory TIC values were used as the actual values in the subsequent machine learning data 

processing. This approach allowed to maintain the integrity and consistency of the analytical process 

while addressing potential sources of error. 

 

   
Figure 7 Comparison of Target, Internal and External Laboratory TIC 
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5.0 Model Development for Stellarnet NIR ADK Portable 

Spectrometer 

5.1. NIR Spectra Data Acquisition 

NIR spectra data acquisition commenced with sample scanning using the StellarNet NIR ADK portable 

spectrometer. A total of 400 samples were scanned for analysis: 100 coal samples and 300 coal/stone 

dust samples. 

NIR spectra data recording was undertaken using the instrument interface as this capability was 

available within the purchased unit, allowing significant resource savings compared to programming the 

functionality in-house. The spectral counts and absorbance unit data were saved independently with a 

unique identifier for each scan. 

All the samples subjected to scanning were systematically categorized into five distinct groups, as 

summarized in Table 3. The raw NIR spectra of the scanned samples are presented in Figure 8. 

Table 3 Categories of Coal and Coal/Stone Dust Samples 

Category Actual TIC Number of Samples 

1 < 70 % 28 

2 70 % - 80 % 116 

3 80 % - 85 % 78 

4 > 85 % 78 

Coal Original Coal 100 

 

 

Figure 8 Raw NIR Spectra 
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5.2. NIR Spectra Data Pre-Processing 

NIR spectra data pre-processing and cleaning were undertaken on the raw NIR spectra of the 300 

coal/stone dust samples using a combination of MATLAB and Python, to prepare the data for 

subsequent machine learning process. The raw NIR spectra of the 100 coal samples were removed as 

they were not used for model development. 

The NIR spectra data pre-processing and cleaning process included: 

5.2.1. Adjustment of Wavelength Range of Raw NIR Spectra 

The raw NIR spectra were truncated to cover the range from 900 nm to 1650 nm due to the noticeable 

presence of noise in regions below 800 nm and above 1800 nm. The presence of noise aligns with the 

known limitations of the Stellarnet NIR ADK portable spectrometer's performance in those wavelength 

extremes. Figure 9 illustrates the truncated NIR spectra with coal samples removed. 

 

 
Figure 9 Truncated NIR Spectra 

5.2.2. Correction of Truncated NIR Spectra 

The truncated NIR spectra contain unwanted variations caused by factors, such as, sample 

inhomogeneity, instrument drift, or scattering effects. To enhance the reliability and interpretability of 

the data, correction techniques were applied to mitigate these variations and improve the quality of the 

spectra. Among the available correction methods, Standard Normal Variate (SNV) stands out as a 

popular and effective technique for NIR spectra data. Therefore, SNV was chosen for its ability to reduce 

baseline shifts and multiplicative effects in the NIR spectra data, enhancing the signal-to-noise ratio 

and aiding in the extraction of meaningful information (Brown, et al., 2009). 

The SNV correction process involved two key steps: centring and scaling. First, each spectrum was 

centred by subtracting the mean spectrum value from every data point, effectively eliminating baseline 

shifts and ensuring that the spectrum was centred around zero. Next, the centred spectrum was scaled 

by dividing each data point by the standard deviation of the spectrum. Scaling normalized the amplitude 

of the spectrum, correcting for multiplicative effects and making the spectra directly comparable (Brown, 

et al., 2009). Figure 10 illustrates the NIR spectra after the application of SNV correction. 
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Figure 10 Corrected NIR Spectra 

5.2.3. Smoothing of Corrected NIR Spectra 

Spectral smoothing was employed as a pre-processing step to prepare the NIR spectra data for 

subsequent machine learning process. In this process, various smoothing filters were considered, with 

the Savitzky-Golay filter being the most commonly used. However, recent research in the field of 

spectral smoothing has revealed that there were superior methods available, one of which was the 

Whittaker-Henderson smoother for spectral data (Schmid, et al., 2022). 

The Whittaker-Henderson smoother parameter tuning process, which was based on extensive 

experimentation and analysis, aiming to optimize the spectral smoothing process, revealed that a 

Whittaker penalty value of 100 provided the best balance between achieving smoothness in the NIR 

spectra data and retaining important spectral features. Figure 11 provides a graphical illustration of the 

NIR spectra after applying the Whittaker-Henderson smoothing technique. 

 
Figure 11 Smoothed NIR Spectra 
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5.2.4. Data Cleaning of Smoothed NIR Spectra 

Data Cleaning is crucial to ensure the reliability and accuracy of data analysis and improve the 

robustness of the models developed in the machine learning process. NIR spectra data often contains 

noise, outliers, and unwanted variations that can negatively impact the predictive performance of 

models. One popular method for addressing these issues is to employ Partial Least Squares (PLS) 

regression for outlier detection, which offers a compelling solution due to its ability to handle the inherent 

complexity and collinearity present in the NIR spectra data. PLS regression excels at capturing latent 

structures and extracting relevant information from highly correlated variables, making it particularly 

suitable for NIR spectra data where a high number of variables (wavelengths) relate to observations 

(TIC) and these variables are often interconnected. 

PLS regression outlier detection works by constructing a model that captured the underlying patterns 

in the smoother NIR spectra and identifying observations that demonstrated significant residuals and 

deviated significantly from these patterns as outliers (Devarakonda, et al., 2014). With PLS regression 

outlier detection, 84 spectra were identified as outliers and the remaining 216 spectra were kept for 

further analysis, as presented in Figure 12. 

 

 
Figure 12 Cleaned NIR Spectra 

5.2.5. Splitting of Cleaned Data 

The cleaned NIR spectra and actual TIC values underwent a random partitioning into two distinct 

subsets: a training dataset, comprising 173 spectra (representing 80 % of the data), and a testing 

dataset, encompassing 43 spectra (equivalent to 20 % of the data). The training dataset served as the 

foundation for the construction and refinement of machine learning models through the utilization of 

MATLAB R2022b. Subsequently, the testing dataset was employed to assess the performance and 

generalization capabilities of the developed models. 
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5.2.6. Transformation of split data 

Data transformation through Principal Component Analysis (PCA) was employed to address issues of 

multicollinearity and high dimensionality in datasets. PCA is a mathematical technique used for 

dimensionality reduction and feature extraction in data analysis. Its primary goal is to transform a set of 

correlated variables, often representing a high-dimensional dataset, into a new set of uncorrelated 

variables called principal components (PCs). These PCs are ordered by the amount of variance they 

capture, with the first few PCs retaining the most information present in the original data. 

Figure 13 demonstrates the PCA results on the training dataset, revealing that the first 30 PCs 

effectively account for 99.97 % of the variance present in the original training dataset. These 30 PCs 

were identified as the transformed variables to be utilized in the subsequent stages of model training. 

The identical transformation methodology was applied to the testing dataset to assess and validate the 

final model's performance. 

 

  
Figure 13 PCA Results of Training Dataset 

5.3. NIR Model Development and Evaluation 

Machine learning techniques were employed to evaluate the NIR spectra data after the completion of 

data pre-processing phase towards the development and evaluation of the models, which included both 

regression and classification models. These models, integral to the data analysis process, were 

designed to learn patterns and relationships within the NIR spectra data. 

5.3.1. NIR Classification Model 

An extensive analysis of classification models was undertaken towards construction of predictive 

models, including Decision Trees, Discriminant Analysis, Naïve Bayes Classifiers, Support Vector 

Machines (SVM), Nearest Neighbour Classifiers, Kernel Approximation Classifiers, Ensemble 

Classifiers and Neural Network (NN) Classifiers. It was determined that the Optimizable SVM 

Classification Model exhibited the most robust performance among the considered models. The 

selection of the Optimizable SVM Classification Model was made after a comprehensive analysis of its 

hyperparameters and training outcomes, which are summarized in Table 4. 

Figure 14 provides insights into the distribution of both correct and incorrect predictions made by the 

NIR Optimizable SVM Classification Model on the training dataset. It is evident that Categories 2 and 4 

exhibit relatively high true positive rates (TPR) of 75.0 % and 84.4 %, respectively, indicating a good 

level of effectiveness in the model's classification of these two categories. This suggests that the NIR 

Optimizable SVM Classification Model successfully identifies and predicts coal/stone dust samples 

belonging to Categories 2 and 4. Conversely, a notable challenge emerges in the classification of 



 

AF0066 Status Date: 011121              Coal HST 20663 – Milestone Three Report Page 20 of 41 

Category 1, as evidenced by a high false negative rate (FNR) of 83.3 %. The high FNR for Category 1 

implies that the model encounters difficulties in accurately identifying coal/stone dust samples belonging 

to this category. This challenge significantly contributes to the overall accuracy, which is reported at 

71.7 %, according to Table 4. 

Figure 15 provides a graphical representation of the true positive rate (TPR) versus the false positive 

rate (FPR) across various classification score thresholds, offering a comprehensive view of the NIR 

Optimizable SVM Classification Model’s performance. The model operating point signifies the specific 

FPR and TPR values corresponding to the threshold employed by the NIR Optimizable SVM 

Classification Model for classifying coal/stone dust samples. The area the under curve (AUC) value 

corresponds to the integral of a ROC curve (TPR values) with respect to FPR from 0 to 1. The AUC 

value is a measure of the overall quality of the NIR Optimizable SVM Classification Model. The AUC 

values are in the range 0 to 1, and larger AUC values indicate better classifier performance (Han, et al., 

2012). As detailed in Figure 15, AUC values for Categories 2 and 4 exhibit a relatively high-performance 

level, whereas AUC values for Categories 1 and 3 are comparatively low, indicating a diminished overall 

performance of the NIR Optimizable SVM Classification Model. 

Table 4 NIR Optimizable SVM Classification Model 

Optimized Hyperparameters 

Kernel Scale 1 

Kernel Function Linear 

Box Constrain Level 992.9427 

Multiclass Method One-vs-One 

Standardize Data No 

Hyperparameter Search Range 

Kernel Scale 0.001 - 1000 

Kernel Function Gaussian, Linear, Quadratic, Cubic 

Box Constrain Level 0.001 - 1000 

Multiclass Method One-vs-One, One-vs-All 

Standardize Data True, False 

Optimizer: Bayesian Optimization 

Iterations 30 

Training Time Limit False 

Training Result 

Overall Accuracy 71.7 % 
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Figure 14 Confusion Chart for NIR Optimizable SVM Classification Model (Training Dataset) 

 

 
Figure 15 ROC Curve for NIR Optimizable SVM Classification Model (Training Dataset) 

The NIR Optimizable SVM Classification Model underwent further evaluation process using an 

independent testing dataset to assess the classifier’s predictive performance and its ability to generalize 

to previously unseen data. As shown in Figure 16, the classifier was employed to predict the categories 

of 43 coal/stone dust samples within the testing dataset, resulting in an overall accuracy rate of 58.1 %. 

It’s worth noting that this accuracy value deviates from the performance observed during the training 

phase with the training dataset. This discrepancy can be attributed to the specific challenges 

encountered by the NIR Optimizable SVM Classification Model, particularly in accurately classifying 

Category 1 samples. In comparison, the classification model demonstrated a high accuracy of 90.0 % 

for Category 4. 
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Figure 16 Confusion Chart for NIR Optimizable SVM Classification Model (Testing Dataset) 

5.3.2. NIR Regression Model 

A comprehensive assessment of various regression models was conducted, including Linear 

Regression Models (LRM), Regression Trees, Support Vector Machines (SVM), Gaussian Process 

Regression (GPR) Models, Kernel Approximation Regression Models, Ensemble of Trees and Neural 

Networks (NN) with the objective of finding the most suitable regression model for the pre-processed 

NIR spectra. 

It was determined that the LRM outperformed the other models and emerged as the optimal choice. 

The selection of LRM was based on a meticulous analysis of its hyperparameters and training 

outcomes. Table 5 summarizes the coefficients and performance metrics for this regression model, 

revealing a Root Mean Squared Error (RMSE) of 2.87 % and R2 of 0.81. 

Table 5 NIR Linear Regression Model 

Coefficients 

Intercept 80.8191 PC 8 -0.2928 PC 16 -3.7946 PC 24 -3.5368 

PC 1 -0.0190 PC 9 -0.8567 PC 17 -0.2594 PC 25 -1.4874 

PC 2 0.8490 PC 10 0.5822 PC 18 -1.8702 PC 26 0.2694 

PC 3 -0.0532 PC 11 -2.1151 PC 19 -0.3007 PC 27 1.6843 

PC 4 0.5067 PC 12 -1.0042 PC 20 -2.1594 PC 28 -0.4941 

PC 5 -0.0630 PC 13 0.1581 PC 21 0.5239 PC 29 -6.2874 

PC 6 -0.7131 PC 14 -2.6843 PC 22 -2.8802 PC 30 -8.0536 

PC 7 -0.4722 PC 15 -0.8340 PC 23 3.2498   

Training Results 

RMSE 2.87 % R2 0.81 

 



 

AF0066 Status Date: 011121              Coal HST 20663 – Milestone Three Report Page 23 of 41 

Figure 17 visually presents the performance of the NIR LRM. As shown in Figure 17(a), the diagonal 

line represents a perfect prediction scenario where actual values equal predicted one. Points along this 

line indicate accurate predictions. The tight cluster of points around the diagonal line suggests that the 

model makes accurate predictions for a majority of the data. As illustrated in Figure 17(b), residuals 

fluctuate randomly near the zero line, suggesting that the model captures the underlying patterns in the 

training dataset well. 

  

Figure 17 (a) Comparison of Actual and Predicted TIC for NIR LRM (Training Dataset); (b) 

Residuals for NIR LRM (Training Dataset) 

The NIR LRM underwent a comprehensive evaluation using an independent testing dataset to assess 

the model's predictive capabilities and its generalization to unseen data. As illustrated in Figure 18, the 

NIR Linear regression model successfully predicted the TIC values for a set of 43 coal/stone dust 

samples within the testing set. The evaluation yielded notable performance metrics with R-squared (R2) 

value of 0.82 and a Root Mean Square Error (RMSE) of 2.67 %. These results closely aligned with the 

performance metrics obtained during the training phase using the training dataset. Such close 

correspondence between training and testing results indicates that the model achieved a balance 

between accuracy and generalization, suggesting that it did not suffer from overfitting and demonstrated 

stability in its predictive performance. This outcome underscores the robustness and reliability of the 

NIR LRM in capturing the underlying patterns in the data. 

  

 

Figure 18 (a) Comparison of Actual and Predicted TIC for NIR LRM (Testing Dataset); (b) 

Residuals for NIR LRM (Testing Dataset) 
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5.3.3. NIR Classification and Regression Model Comparison 

Two distinct NIR models were successfully developed based on the machine learning technique: 

regression and classification. 

The NIR Optimizable SVM Classification Model demonstrated high accuracy, reaching 84.4 % for 

Category 4. Nevertheless, the overall accuracy of the model stood at 71.7 %, which fell slightly short of 

the project objectives outlined in Section 2.4. This shortfall was primarily attributed to challenges 

encountered by the model in accurately categorizing instances within Category 1. 

The NIR LRM, on the other hand, yielded promising results, achieving a RMSE of 2.87 % and R2 of 

0.81, aligning well with the objectives outlined in Section 2.4. 
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6.0 Model Development for Lightnovo miniRaman Portable 

Spectrometer 

6.1. Raman Spectra Data Acquisition 

The initiation of Raman spectra data acquisition involved the systematic sample scanning utilizing the 

Lightnovo miniRaman portable spectrometer. A total of 400 samples underwent scanning, comprising 

100 coal samples and 300 coal/stone dust samples. 

The Miraspec software, provided by Lightnovo, facilitated the configuration of the parameters of the 

Lightnovo miniRaman portable spectrometer and recording Raman spectra data throughout the 

scanning process. The scanning parameters were defined as follows: a laser power of 10 mW, an 

exposure time of 250 ms, and a repetition of 25 scans. Each spectrum's intensity data was saved 

individually, and each file was assigned a unique identifier corresponding to its respective scan. 

The Raman sample scanning process incorporated the following techniques: 

6.1.1. Calibration of Lightnovo miniRaman Portable Spectrometer 

Prior to commencing sample scanning, Lightnovo miniRaman portable spectrometer underwent 

calibration following the Standard Operation Procedure provided by the supplier. The calibration 

process involved the utilization of a polystyrene standard sample to ensure the precision in wavenumber 

and intensity measurements. 

6.1.2. Background Correction 

Raman analysis is susceptible to various interferences, such as, ambient light sources and signals from 

the sample containers, which can contribute to the background signal. Therefore, background 

correction was implemented during sample scans to subtract unwanted background and sample 

container signals, enhancing the accuracy and reliability of the recorded Raman spectra data. 

6.1.3. Baseline Correction 

Fluorescence poses a common challenge in Raman spectroscopy, especially for low-maturity samples. 

Additionally, the broad bands in the Raman spectra of carbonaceous solid fuels, like coal, can easily 

be confused with the fluorescence background (Quirico, et al., 2005), leading to a significant baseline 

shift. Therefore, baseline correction was applied during sample scans using Rolling Circle filter with a 

radius of 750 and a scale Y of 0.01. 

6.1.4. Smoothing 

Although the optimized Raman scanning parameters typically yield a high signal-to-noise ratio (SNR) 

in Raman spectra, the nature of coal and coal/stone dust samples, combined with the sensitivity to 

thermal effects and the low laser power and frequency of the Lightnovo miniRaman portable 

spectrometer in this project, resulted in Raman spectra data with notable noise disturbances. Therefore, 

smoothing was applied during sample scans to remove noise from the Raman spectra data using 

Savitzky-Golay filter with a radius of 25 and the order of 6, enabling the extraction of Raman signals 

with less ambiguity. 

The scanned samples were categorized into five distinct groups, as outlined in Table 3. The raw Raman 

spectra of 300 coal/stone dust samples are presented in Figure 19. 
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Figure 19 Raw Raman Spectra 

6.2. Raman Spectra Data Pre-Processing 

The raw Raman spectra of 300 coal/stone dust samples underwent data pre-processing and cleaning, 

utilizing a combination of MATLAB and Python. This step was crucial in preparing the Raman spectra 

data for the subsequent machine learning processes. 

The pre-processing and cleaning involved the following steps to enhance the quality and reliability of 

the Raman spectra data: 

6.2.1. Alignment of Raw Raman Spectra 

Raman spectra alignment is a crucial step in the data pre-processing and analysis pipeline to ensure 

the consistency and comparability of the acquired raw Raman spectra. The primary goal is to correct 

for potential shifts along the wavenumber axis, which may arise from instrumental or environmental 

variations in the starting and ending wavenumbers during data acquisition. A common approach 

involves utilizing cross-correlation to determine the optimal alignment between a selected reference 

spectrum and the remaining spectra in the Raman spectra data. The alignment was achieved through 

interpolation, ensuring that corresponding wavenumbers across spectra were precisely matched (Chen, 

et al., 2018). Figure 20 presents the aligned Raman spectra. 

6.2.2. Normalization of Aligned Raman Spectra 

Normalization is essential when predicting the concentration of similar style samples, like different coal 

samples dosed with the same stone dust, using Raman spectra. Variations in coal samples can 

introduce inherent differences in Raman intensity due to factors such as mineral composition. 

Normalization is crucial to eliminate these intensity variations, ensuring that concentration predictions 

are based on the intrinsic molecular features rather than sample-specific intensity differences. It ensures 

that predictive models focus on the relevant concentration-related information, making them more 

resilient to experimental variations and improving their generalizability across diverse sample sets. 

The choice of normalization method depends on the nature of the dataset, and selecting an appropriate 

method enhances the performance and interpretability of subsequent machine learning models. Due to 

the inherent variations in Raman intensity arising from different mineral compositions in coal samples, 
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an extensive normalization analysis was conducted. This analysis encompassed various normalization 

techniques, including min-max normalization (Han, et al., 2012), area normalization (Chirala & Kumar , 

1990), vector normalization, z-score normalization (Han, et al., 2012), logarithmic normalization, and 

custom scaling (Han, et al., 2012). Custom scaling was implemented through a multiplication factor 

applied to the aligned Raman spectra, ensuring uniform intensity values at 942 cm-1 for all sample 

scans. Following a comprehensive evaluation, it was determined that custom scaling yielded the most 

effective normalization results. The outcome of this investigation is presented in Figure 21. 

 

 
Figure 20 Aligned Raman Spectra 

 
Figure 21 Normalized Raman Spectra 
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6.2.3. Data Cleaning of Normalized Raman Spectra 

Tukey’s fence outlier detection technique (Schwertman, et al., 2004) was applied to remove outliers to 

improve the quality and reliability of the normalized Raman spectra. By excluding extreme values 

beyond the established fences, this method aimed to improve the robustness of the Raman spectra 

data. Notably, variations in Raman intensity were observed to be associated with fluctuations in TIC 

values. As shown in Figure 22, the data cleaning procedure was implemented on a per-category basis, 

allowing for the removal of extreme values within each specific category. This approach ensured that 

outliers, which might have aligned with neighbouring categories but did not reflect extreme values 

across the entire dataset, were appropriately addressed. Figure 23 presents the cleaned Raman 

spectra, while Table 6 summarizes the data cleaning, 71 spectra identified as outliers and 229 spectra 

retained for subsequent analysis. 

 

  

  

Figure 22 Tukey’s Fence Data Cleaning per Category 
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Figure 23 Cleaned Raman Spectra 

Table 6 Summary of Tukey’s Fence Data Cleaning 

 Inliers Outliers Total 

Category 1 21 7 28 

Category 2 88 28 116 

Category 3 56 22 78 

Category 4 64 14 78 

Total 229 71 300 

 

6.2.4. Splitting of Cleaned Data 

The cleaned Raman spectra and actual TIC values underwent a systematic random partitioning, 

resulting in the creation of two distinctive subsets: a training dataset comprising 184 spectra, 

representing 80 % of the dataset, and a testing dataset consisting of 45 spectra, equivalent to 20 % of 

the data. The training dataset played a fundamental role in the formulation and refinement of machine 

learning models, leveraging the capabilities of MATLAB R2022b. Following model development, the 

testing dataset was employed to assess the performance and generalization aptitude of the derived 

models. 

6.3. Raman Model Development and Evaluation 

Machine learning methodologies were applied after the completion of data pre-processing to develop 

and evaluate Raman regression and classification models. These models were engineered to discern 

patterns and relationships embedded within the dataset. 
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6.3.1. Raman Classification Model 

A comprehensive examination of classification models was conducted utilizing the training dataset to 

construct predictive models, encompassing a range of methodologies, including Decision Trees, 

Discriminant Analysis, Naïve Bayes Classifiers, Support Vector Machines (SVM), Nearest Neighbour 

Classifiers, Kernel Approximation Classifiers, Ensemble Classifiers and Neural Network (NN) 

Classifiers. After the analysis, it was concluded that the Optimizable Tree demonstrated the most robust 

performance among the models under consideration. The decision to select the Optimizable Tree was 

based on the evaluation of its hyperparameters and training outcomes, as detailed in Table 7. This 

selection process ensures the adoption of a model that exhibits optimal performance and reliability for 

this classification task. 

Table 7 Raman Optimizable Tree Classification Model 

Optimized Hyperparameters 

Surrogate Decision Splits Off 

Maximum Number of Splits 14 

Split Criterion Twoing Rule 

Hyperparameter Search Range 

Maximum Number of Splits 1 - 183 

Split Criterion 

Gini’s Diversity Index 

Twoing Rule 

Maximum Deviation Reduction 

Optimizer: Bayesian Optimization 

Iterations 30 

Training Time Limit False 

Training Result 

Overall Accuracy 39.1 % 

 

Figure 24(a) illustrates the Raman intensities at wavenumbers 1334 and 1570 cm-1 grouped by the 

respective categories. A notable observation is the absence of distinct separation among the 

categories, suggesting inherent complexities that pose challenges for the Raman Optimizable Tree 

classification model in accurately classifying coal/stone dust samples based on their Raman spectra. 

Moreover, in Figure 24(b), a presence of misclassifications is evident, underscoring the suboptimal 

performance of the Raman Optimizable Tree classification. This further underscores the difficulty the 

model faces in effectively distinguishing coal/stone dust samples. 

Figure 25 provides insights into the distribution of both correct and incorrect predictions made by the 

Raman Optimizable Tree classification model on the training dataset. It is evident that Categories 2 and 

4 exhibit relatively high true positive rates (TPR) of 49.3 % and 46.0 %, respectively, indicating a good 

level of effectiveness in the model's classification of these two categories. This suggests that the Raman 

Optimizable Tree classification model successfully identifies and predicts coal/stone dust samples 

belonging to Categories 2 and 4. Conversely, a notable challenge emerges in the classification of 

Category 1, as evidenced by a high false negative rate (FNR) of 94.7 %. The high FNR for Category 1 

implies that the model encounters difficulties in accurately identifying coal/stone dust samples belonging 
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to this category. This challenge significantly contributes to the overall accuracy, which is reported at 

39.1 %, according to Table 7. 

 

  

Figure 24 (a) Raman Intensities at Wavenumber 1334 and 1570 cm-1 of Cleaned Spectral per 

Category; (b) Optimizable Tree Model Predications (Training Dataset) 

 

 

Figure 25 Confusion Chart for Raman Optimizable Tree Classification Model (Training Dataset) 

Figure 26 provides a graphical representation of the true positive rate (TPR) versus the false positive 

rate (FPR) across various classification score thresholds, offering a comprehensive view of the Raman 

Optimizable Tree classification model's performance. The model operating point signifies the specific 

FPR and TPR values corresponding to the threshold employed by the Raman Optimizable Tree 

classification model for classifying coal/stone dust samples. The area the under curve (AUC) value 

corresponds to the integral of a ROC curve (TPR values) with respect to FPR from 0 to 1. The AUC 

value is a measure of the overall quality of the Optimizable Tree. The AUC values are in the range 0 to 

1, and larger AUC values indicate better classifier performance (Han, et al., 2012). As detailed in Figure 
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26, AUC values for Categories 2 and 4 exhibit a relatively high-performance level, whereas AUC values 

for Categories 1 and 3 are comparatively low, indicating a diminished overall performance of the Raman 

Optimizable Tree classification model. 

 

 
Figure 26 ROC Curve for Raman Optimizable Tree Classification Model (Training Dataset) 

The Raman Optimizable Tree classification model underwent a comprehensive evaluation process 

using the testing dataset to assess its predictive performance and generalization capabilities to 

previously unseen data. As shown in Figure 27, the model was applied to predict the categories of 45 

coal/stone dust samples within the testing dataset, yielding an overall accuracy rate of 37.8 %. Notably, 

this accuracy aligns closely with the performance observed during the training phase with the training 

dataset, indicative of the sufficiency of the training dataset for model training and the absence of 

overfitting or underfitting. Furthermore, this classification model exhibited a notable accuracy of 68.4 % 

for Category 2. In contrast, the accuracies for Categories 1 and 3 were considerably lower, with 0 % 

and 10.0 %, respectively. 

 
Figure 27 Confusion Chart for Raman Optimizable Tree Classification Model (Testing Dataset) 



 

AF0066 Status Date: 011121              Coal HST 20663 – Milestone Three Report Page 33 of 41 

6.3.2. Raman Regression Model 

A thorough evaluation of multiple regression models, encompassing Linear Regression Models, 

Regression Trees, Support Vector Machines (SVM), Gaussian Process Regression (GPR) Models, 

Kernel Approximation Regression Models, Ensemble of Trees and Neural Networks (NN), was 

undertaken with the aim of identifying the most suitable regression model for the pre-processed Raman 

spectra data. Subsequent analysis revealed that the Optimizable Regression Tree surpassed the 

performance of the other models, emerging as the optimal choice. The selection of the Optimizable 

Regression Tree was informed by the examination of its hyperparameters and training outcomes, as 

summarized in Table 8. 

Table 8 Raman Optimizable Regression Tree Model 

Optimized Hyperparameters 

Surrogate Decision Splits Off 

Minimum Leaf Size 69 

Hyperparameter Search Range 

Minimum Leaf Size 1 -92 

Optimizer: Bayesian Optimization 

Iterations 30 

Training Time Limit False 

Training Result 

RMSE 7.324 % 

R2 0.04 

 

The training outcomes are graphically depicted in Figure 28. The scatter plot reveals a notable deviation 

of data points from the diagonal line, suggesting suboptimal predictive performance utilizing the Raman 

Optimizable Regression Tree model. 

The Raman Optimizable Regression Tree model underwent a thorough evaluation utilizing the testing 

dataset to assess its predictive capabilities and generalization to previously unseen data. As depicted 

in Figure 29, the model exhibited limited success in predicting the TIC values for a set of 45 coal/stone 

dust samples within the testing dataset, yielding an R-squared (R2) value of 0.01 and a Root Mean 

Square Error (RMSE) of 7.3236 %. These outcomes closely mirrored the performance metrics acquired 

during the training phase with the training dataset. The convergence of training and testing results 

suggests that the model achieved a balance between accuracy and generalization, indicative of its 

resilience against overfitting and its consistent predictive stability. 
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Figure 28 Comparison of Predicted and Actual TIC for Raman Optimizable Regression Tree 

Model (Training Dataset) 

 
Figure 29 Comparison of Predicted and Actual TIC for Raman Optimizable Regression Tree 

Model (Testing Dataset) 

6.3.3. Raman Classification and Regression Model Comparison 

Two distinct models, one for classification and another for regression, were developed for the Lightnovo 

miniRaman portable spectrometer using machine learning techniques. 

The Raman Optimizable Tree classification model exhibited notable success, achieving an accuracy of 

68.4 % specifically for Category 2. However, the overall accuracy of the classification model reached 

37.8 %, which did not meet the predefined project objective outlined in Section 2.4. 

On the other hand, the Raman Optimizable Regression Tree model did not yield favourable results, as 

evidenced by an R-squared (R2) value of 0.01 and a Root Mean Square Error (RMSE) of 7.3236 %. 

These outcomes fell short of the initial project objectives specified in Section 2.4.  
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7.0 NIR and Raman Model Comparison 

The NIR Linear Regression Model (LRM) exhibited superior predictive performance, achieving an 

RMSE of 2.87 % and an R2 of 0.81, as highlighted in Section 5.3.3, in contrast to the NIR Optimizable 

SVM Classification Model. These results align closely with the objectives outlined in Section 2.4. 

The Raman Optimizable Tree Classification Model demonstrated improved prediction performance with 

an overall accuracy of 37.8 %, when compared to the Raman Optimizable Regression Tree model, as 

discussed in Section 6.3.3. However, it fell short of meeting the predefined project objective specified 

in Section 2.4. 

Overall, the application of the Stellarnet NIR ADK portable spectrometer yielded the most favourable 

predictive performance in rapid TIC analysis, notably through the development of the NIR LRM. On the 

other hand, the Lightnovo miniRaman portable spectrometer did not deliver optimal predictive 

performance in real-time stone dust analysis, whether through regression or classification models. 

The less favourable predictive outcome for the Lightnovo miniRaman portable spectrometer can be 

attributed to several variables. One of the variables is the moisture content in samples: as the water 

can have an intensive absorption of the NIR light and reduce its Raman scattering light signal (Xu, et 

al., 2021), the moisture content in coal and coal/stone dust samples might have impacted the accuracy 

of their Raman spectra. 

Additionally, the fundamental principles of Raman spectroscopy contribute to less favourable predictive 

outcome for the Lightnovo miniRaman portable spectrometer. The intensity of Raman scattering can 

be defined according to Equation (1): 

 𝐼 = 𝐾 × 𝑙 ×  𝛿2  ×  𝑤4, (1) 

where: 𝐾 is a constant, 𝛿 is the polarizability of electrons in a molecule, 𝑙 and 𝑤 are the power and 

frequency of the laser. 𝐾 depends on various factors, including the nature of the sample, the efficiency 

of the Raman instrument and the units used for power, polarizability and frequency. The intensity of 

Raman scattering, 𝐼, is highly dependent on the frequency of the laser, and the 𝑤4 term in the equation 

indicates a strong dependence on this factor (Smith & Dent, 2005). 

Furthermore, the Raman signal induced by the near-infrared (NIR) (785nm) laser is weak according to 

Equation (1), despite the low power of NIR laser being the main advantage of Lightnovo miniRaman 

portable spectrometer, which is typically challenging to induce the fluorescence in most materials 

(Czamara, et al., 2015). Consequently, Raman scanning often necessitates a higher laser power, 

typically from 100 mW to 500 mW (Xu, et al., 2021), instead of the low laser power of up to 50 mW 

Lightnovo miniRaman portable spectrometer. This elevated laser power requirement poses a risk of 

thermal damage to the sample, especially for dark samples, such as, coal and coal/stone dust samples. 

To address the various issue, dispersing coal and coal/stone dust samples in dilutants, such as, KCl 

and KBr is preferred during Raman analysis. These substances serve as effective thermal conductors, 

mitigating the potential thermal damage caused by the higher laser power during Raman scanning 

(Smith & Dent, 2005). 
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8.0 Conclusions 

The project has successfully achieved the objectives outlined in Section 2.4, which included the 

selection of two commercially available spectrometers for evaluation, the preparation of 300 coal/stone 

dust samples, the development of both classification and regression models for the chosen 

spectrometers, and the comprehensive comparison of the performance of the selected spectrometers. 

The NIR Linear Regression Model (LRM) exhibited superior predictive performance, achieving an 

RMSE of 2.87 % and an R2 of 0.81, as highlighted in Section 5.3.3. These results align closely with the 

objectives outlined in Section 2.4 of the project. 

On the other hand, the Raman Optimizable Tree Classification Model demonstrated an overall accuracy 

of 37.8 %, as discussed in Section 6.3.3. However, it fell short of meeting the predefined project 

objective specified in Section 2.4. 

In conclusion, the application of the Stellarnet NIR ADK portable spectrometer yielded the most 

favourable predictive performance in rapid TIC analysis, notably through the development of the NIR 

LRM. Conversely, while the Lightnovo miniRaman portable spectrometer did not deliver optimal 

predictive performance in real-time stone dust analysis, whether through regression or classification 

models, it must be noted that the analysis of data for the Raman spectrometer was not as 

comprehensive as for the Stellarnet NIR ADK spectrometer due to time constraints.  

 

9.0 Recommendations and Future Developments 

Based on the results obtained to-date, certain areas have been identified for project improvement, 

encompassing sample selection, data pre-processing, and analysis. 

9.1. Sample Selection 

Given that the chosen coal samples encompassed a variety of both fresh and aged samples spanning 

a 20-year timeframe, the oxidation process in aged coal samples could potentially influence spectrum 

readings. Hence, incorporating fresh coal samples from coal mines into the study could facilitate an 

examination of the impact of coal sample aging. This exploration aims to ascertain whether the selection 

of fresh coal samples contributes to enhancing model development. 

9.2. Data Pre-Processing and Analysis 

Further data pre-processing and analysis should be undertaken to improve results for both 

spectrometers as follows: 

9.2.1. Stellarnet NIR ADK Portable Spectrometer 

The NIR Optimizable SVM Classification Model demonstrated an overall good prediction capability but 

fell short in recognizing Category 1 data. This is a common problem in implementing machine learning 

algorithm with imbalanced data, which was the case with Category 1 samples, which were under-

represented. Therefore, in further research, the use of appropriate data balancing techniques, for 

example, SMOTE techniques (Liu, et al., 2023) to increase Category 1 size would be explored. 

9.2.2. Lightnovo miniRaman Portable Spectrometer 

The results indicated that the Lightnovo miniRaman portable spectrometer did not deliver optimal 

predictive performance in real-time stone dust analysis, whether through regression or classification 

models. However, this inadequate performance could be attributed to many factors ranging from data 

acquisition to the model training. In addition, due to the late arrival of the Lightnovo miniRaman portable 

spectrometer, as compared to the Stellarnet NIR ADK portable spectrometer, thorough performance 

analysis was not possible in the timeframe allocated for the completion of the project. Therefore, the 



 

AF0066 Status Date: 011121              Coal HST 20663 – Milestone Three Report Page 37 of 41 

following steps will be undertaken in the near future toward more thorough evaluation of the Lightnovo 

miniRaman portable spectrometer: 

1. Data acquisition: additional Raman spectra will be acquired with the laser power set to <0.40 

mW, as suggested by recent study related to coal samples undertaken (Vergara Sassarini, et 

al., 2023) with further literature review of the state-of-the-art.  

2. Data pre-processing: a more systematic deconvolution process of the Raman spectra data will 

be applied to assess the Raman parameters (e.g., peak position, width, area and intensity) for 

individual bands (Ba, et al., 2022). 

3. Model development: other algorithms with successful application for spectral data will be 

explored (Qin, et al., 2024). 

4. Additional time will be allocated for data analysis for the Raman spectrometers because studies 

related to coal for the Raman parameters are very limited.  

10.0 Acknowledgement 

The author would like to express gratitude to the Coal Service Health and Safety Trust for their generous 

funding under the Project No. 20663 entitled “System Demonstrator of a Portable NIR Spectrometer for 

Rapid Stone Dust Compliance Testing”, which greatly contributed to the success of this project.  

Special thanks to Professor Amoussou Coffi Adoko from the School of Mining and Geosciences, 

Nazarbayev University, for his invaluable contribution to data processing and machine learning 

analysis, enhancing the project's overall quality and outcomes. 

  



 

AF0066 Status Date: 011121              Coal HST 20663 – Milestone Three Report Page 38 of 41 

11.0 References 

Ba, E. C. T. et al., 2022. Deconvolution Process Approach in Raman Spectra of DLC Coating to 

Determine the sp3 Hybridization Content Using the ID/IG Ratio in Relation to the Quantification 

Determined by X-Ray Photoelectron Spectroscopy. Diamond and Related Materials. 

Brown, S. D., Tauler, R. & Walczak, B., 2009. Comprehensive Chemometrics: Chemical and 

Biochemical Data Analysis. Frisco, Colorado, USA: Elsevier. 

Chen, H. et al., 2018. Eliminating Non-linear Raman Shift Displacement Between Spectrometers via 

Moving Window Fast Fourier Transform Cross-Correlation. Frontiers in Chemistry, pp. 1 - 11. 

Ching, R., 2017. Measuring Ash Content in Coal using Portable X-Ray Fluorescence, Brandon, 

Canada: Brandon University. 

Chirala, S. K. & Kumar , S. N., 1990. Area Normalization of the Renal Region of Interest in Radionuclide 

Renography Data Analysis: A Misconception. International Journal of Radiation Applications and 

Instrumentation, pp. 243 - 245. 

Coal Services, 2023. Test Report No. 23-0302/01 Roadwat Dust Analysis. Thornton(NSW): Coal 

Services. 

Czamara, K. et al., 2015. Raman Spectroscopy of Lipids: A Review. Journal of Raman Spectroscopy, 

pp. 4 - 20. 

Devarakonda, N., Subhani, S. & Althaf, S., 2014. Outliers Detection in Regression Analysis Using 

Partial Least Square Approach. s.l., Springer, pp. 125 - 135. 

Han, J., Kamber, M. & Pei, J., 2012. Data Mining: Concepts and Techniques. Waltham, Massachusetts, 

USA: Morgan Kaufmann. 

Harris, M. L., Sapko, M. J., Varley, F. D. & Weiss, E. S., 2012. Coal Dust Explosibility Meter Evaluation 

and Recommendations for Application, Pittsburgh, Pennsylvania, USA: National Institute for 

Occupational Safety and Health. 

Kasbekar, R. S., Ji, S., Clancy, E. A. & Goel, A., 2023. Optimizing the Input Feature Sets and Machine 

Learning Algorithms for Reliable and Accurate Estimation of Continuous, Cuffless Blood 

Pressure. Nature Portfolio, pp. 1-13. 

Liu, Q. et al., 2023. Application of KM-SMOTE for Rockburst Intelligent Prediction. Tunnelling and 

Underground Space Technology. 

NSW Resources Regulator, 2015. [Online]  

Available at: https://www.resourcesregulator.nsw.gov.au/sites/default/files/documents/nsw-

code-of-practice-roadway-dust-analysis-in-underground-coal-mines.pdf 

Qin, Y. et al., 2024. Deep Learning Analysis for Rapid Detection and Classification of Household 

Plastics Based on Raman Spectroscopy. Spectrochimica Acta Part A: Molecular and 

Biomolecular Spectroscopy. 

Quirico, E., Rouzaud, J.-N., Bonal, L. & Montagnac, G., 2005. Maturation Grade of Coals as Revealed 

by Raman Spectroscopy: Progress and Problems. Spectrochimica Acta Part A, pp. 2368 - 2377. 

Reaources Safety and Health Queensland, 2023. Recongnised Standard 5. [Online]  

Available at: https://www.rshq.qld.gov.au/__data/assets/pdf_file/0006/240378/recognised-

standard-05.pdf 

Sapko, M. J., Cashdollar, K. L., Green, G. M. & Verakis, H. C., n.d. Coal Dust Particle Size Survey of 

U.S. Mines. [Online]  

Available at: https://www.cdc.gov/niosh/mining/UserFiles/works/pdfs/cdpss.pdf 



 

AF0066 Status Date: 011121              Coal HST 20663 – Milestone Three Report Page 39 of 41 

Schauenburg, 2023. CDEM-1000 Coal Dust Explosibility Meter. [Online]  

Available at: https://schauenburg-us.com/cdem/ 

Schmid, M., Rath, D. & Diebold, U., 2022. Why and How Savitzky–Golay Filters Should Be Replaced. 

ACS Publications, pp. 185-196. 

Schwertman, N. C., Owens, M. A. & Adnan, R., 2004. A Simple More General bBoxplot Method for 

Identifying Outliers. Computational Statistics & Data Analysis, pp. 165 - 174. 

Simtars, 2022. Procedure for Determination of the Incombustible Content of Roadway Dust. 

Mackay(QLD): Simtars. 

Smith, E. & Dent, G., 2005. Modern Raman Spectroscopy – A Practical Approach. Chichester, England: 

John Wiley & Sons. 

Vergara Sassarini, N. A. et al., 2023. Automatic Organofacies Identification by Means of Machine 

Learning on Raman Spectra. International Journal of Coal Geology. 

Wedel, D. J., Belle, B. & Kizil, M. S., 2015. The Effectiveness of Rapid Stone Dust Compliance Testing 

in Underground Coal. Wollongong, NSW, Australia, The University of Wollongong, pp. 259 - 270. 

Xu, J. et al., 2021. Raman Spectroscopy as a Versatile Tool for Investigating Thermochemical 

Processing of Coal, Biomass, and Wastes: Recent Advances and Future Perspectives. Energy 

Fuels, pp. 2870 - 2913. 

 

 

 



 

AF0066 Status Date: 011121  Coal HST 20663 – Milestone Three Report      Page 40 of 41 

12.0 Appendix 

12.1. Spectrometer Selection 

 

Instrument Name Sensor Type Spectral Range Price (AUD) Chosen? Excluded due to: 

Stellarnet ADK NIR InGaAs Photodiode array 900-1700nm ~$25,000 Yes N/A 

Lightnovo  Raman   Yes N/A 

Ibsen PEBBLE InGaAs Photodiode array 950-1700nm  No High upfront development 

Hamamatsu MEMS-FPI 

InGaAs PIN photodiode 

with Fabry-Perot 

Interferometer (MEMS-FPI) 

1350-1650nm 

1550-1850nm 

1750-2150nm 

~$1000 for sensor 

~$3000 for 

development kit  

No 
Lack of spectral sensitivity required for early 

demonstrator, high upfront development  

Hamamatsu FT-IR engine InGaAs PIN photodiode 1100-2500 nm ~$10,000 No High upfront development 

Spectral Evolution NIR   ~$80,000 No Cost 

Spectral Engine    ~$8,000 No 
Lack of spectral sensitivity required for early 

demonstrator  

AMS AS7343 Vis/NIR photodiode matrix  

~$20 for sensor 

~$800 for 

development kit 

No 
Lack of spectral sensitivity required for early 

demonstrator, High upfront development 

AMS AS7421 NIR photodiode matrix  

~$35 for sensor 

~$1200 for 

development kit 

No 

Lack of spectral sensitivity required for early 

demonstrator, very high upfront 

development 
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12.2. Budget Breakdown 

 

Item Cost (AUD ex GST) Simtars Coal Health and Safety Trust Comment 

Stellarnet NIR ADK  $23,515.00  23,515.00  

Lightnovo Raman 

Spectrometer 
$20,643.00  20,643.00  

Laboratory Analysis  $12,157.00 6,902.50 5,418.50 
Internal and external laboratory analysis for coal 

quality and incombustible content 

Sample Preparation  $4,459.00 3,095.00 1,364.00 Labour only 

Set-up and Testing  $16,881.00 12,601.00 4,280.00 Labour and test setup 

Analysis and Machine Learning $16,485.00 11,794.50 4,690.50 Labour only 

Administration  $3,568.00 $3,568.00  Labour only 

Total $97,708.00 $37,961.00 $59,911.00  


